ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Oscillations in Cataclysmic Variables. XVI. DW Cancri

68   0   0.0 ( 0 )
 نشر من قبل Jonathan Kemp
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joseph Patterson




اسأل ChatGPT حول البحث

We report photometry and spectroscopy of the novalike variable DW Cancri. The spectra show the usual broad H and He emission lines, with an excitation and continuum slope characteristic of a moderately high accretion rate. A radial-velocity search yields strong detections at two periods, 86.1015(3) min and 38.58377(6) min. We interpret these as respectively the orbital period P_orb of the binary, and the spin period P_spin of a magnetic white dwarf. The light curve also shows the spin period, plus an additional strong signal at 69.9133(10) min, which coincides with the difference frequency 1/P_spin-1/P_orb. These periods are stable over the 1 year baseline of measurement. This triply-periodic structure mimics the behavior of several well-credentialed members of the DQ Herculis (intermediate polar) class of cataclysmic variables. DQ Her membership is also suggested by the mysteriously strong sideband signal (at nu_spin-nu_orb), attesting to a strong pulsed flux at X-ray/EUV/UV wavelengths. DW Cnc is a new member of this class, and would be an excellent target for extended observation at these wavelengths.



قيم البحث

اقرأ أيضاً

88 - M. Uemura 2002
Our photometric monitoring revealed that DW Cnc, which was originally classified as a dwarf nova (V=15--17.5), remained at a bright state of Rc=14.68+/-0.07 for 61 days. In conjunction with optical spectra lacking a strong He II emission line, we pro pose that the object is not a dwarf nova, but a non-magnetic nova-like variable. Throughout our monitoring, the object showed strong quasi-periodic oscillations (QPOs) with amplitudes reaching about 0.3 mag. Our period analysis yielded a power spectrum with two peaks of QPOs, whose center periods are 37.5+/-0.1 and 73.4+/-0.4 min and, furthermore, with a significant power in frequencies lower than the QPOs. DW Cnc is a unique cataclysmic variable in which kilo-second QPOs were continuously detected for 61 days. We propose two possible interpretations of DW Cnc: (i) A permanent superhumper below the period minimum of hydrogen-rich cataclysmic variables. (ii) A nova-like variable having an orbital period over 3 hours. In this case, the QPOs may be caused by trapped disk oscillations.
80 - A.A. Nucita , L. Conversi , 2019
We report on the $XMM$-Newton observation of DW Cnc, a candidate intermediate polar candidate whose historical optical light curve shows the existence of periods at $simeq 38$, $simeq 86$ and $simeq 69$ minutes which were interpreted as the white dwa rf spin, the orbital and the spin-orbit beat periodicities. By studying the $0.3-10$ keV light curves, we confirm the existence of a period at $simeq 38$ minutes and find in the OM light curve a signature for a period at $75pm 21$ minutes which is consistent with both the orbital and spin-orbit beat. { These findings allow us to unveil without any doubt, the nature of DW Cnc as an accreting intermediate polar. The EPIC and RGS source spectra were analyzed and a best fit model, consisting of a multi-temperature plasma, was found. The maximum temperature found when fitting the data is $kT_{max}simeq 31$ keV which can be interpreted as an upper limit to the temperature of the shock.
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variables AC Cnc and V363 Aur (= Lanning 10). There is evidence of irradiation on the inner hemisphere of the secondary star in both systems, which we corr ect for using a model that reproduces the observations remarkably well. We find the radial velocity of the secondary star in AC Cnc to be K_R = 176 pm 3 km/s and its rotational velocity to be v sin i = 135 pm 3 km/s. From these parameters we obtain masses of M_1 = 0.76 pm 0.03 M_sun for the white dwarf primary and M_2 = 0.77 pm 0.05 M_sun for the K2 pm 1V secondary star, giving a mass ratio of q = 1.02 pm 0.04. We measure the radial and rotational velocites of the G7 pm 2V secondary star in V363 Aur to be K_R = 168 pm 5 km/s and v sin i = 143 pm 5 km/s respectively. The component masses of V363 Aur are M_1 = 0.90 pm 0.06 M_sun and M_2 = 1.06 pm 0.11 M_sun, giving a mass ratio of q = 1.17 pm 0.07. The mass ratios for AC Cnc and V363 Aur fall within the theoretical limits for dynamically and thermally stable mass transfer. Both systems are similar to the SW Sex stars, exhibiting single-peaked emission lines with transient absorption features, high-velocity S-wave components and phase-offsets in their radial velocity curves. The Balmer lines in V363 Aur show a rapid increase in flux around phase 0 followed by a rapid decrease, which we attribute to the eclipse of an optically thick region at the centre of the disc. This model could also account for the behaviour of other SW Sex stars where the Balmer lines show only a shallow eclipse compared to the continuum.
We examine published observations of dwarf nova oscillations (DNOs) on the rise and decline of outbursts and show that their rates of change are in reasonable agreement with those predicted from the magnetic accretion model. We find evidence for prop ellering in the late stages of outburst of several dwarf novae, as shown by reductions in EUVE fluxes and from rapid increases of the DNO periods. Reanalysis of DNOs observed in TY PsA, which had particularly large amplitudes, shows that the apparent loss of coherence during late decline is better described as a regular switching between two nearby periods. It is partly this and the rapid deceleration in some systems that make the DNOs harder to detect. We suggest that the 28.95 s periodicity in WZ Sge, which has long been a puzzle, is caused by heated regions in the disc, just beyond the corotation radius, which are a consequence of magnetic coupling between the primary and gas in the accretion disc. This leads to a possible new interpretation of the `longer period DNOs (lpDNOs) commonly observed in dwarf novae and nova-like variables.
158 - Patrick A. Woudt 2009
We have observed dwarf nova oscillations (DNOs) in OY Car during outburst, down through decline and beyond; its behaviour is similar to what we have previously seen in VW Hyi, making it only the second dwarf nova to have DNOs late in outburst that co ntinue well into quiescence. There are also occasional examples of DNOs in deep quiescence, well away from outburst - they have properties similar to those during outburst, indicating similar physical causes and structures. We discuss the occurrence of DNOs in other dwarf novae and conclude that DNOs during quiescence are more common than often supposed and exhibit properties similar to those seen in outburst.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا