ترغب بنشر مسار تعليمي؟ اضغط هنا

The GraF instrument for imaging spectroscopy with the adaptive optics

61   0   0.0 ( 0 )
 نشر من قبل Almas Chalabaev
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Chalabaev




اسأل ChatGPT حول البحث

The GraF instrument using a Fabry-Perot interferometer cross-dispersed with a grating was one of the first integral-field and long-slit spectrographs built for and used with an adaptive optics system. We describe its concept, design, optimal observational procedures and the measured performances. The instrument was used in 1997-2001 at the ESO 3.6 m telescope equipped with ADONIS adaptive optics and SHARPII+ camera. The operating spectral range was 1.2 - 2.5 microns. We used the spectral resolution from 500 to 10 000 combined with the angular resolution of 0.1 - 0.2. The quality of GraF data is illustrated by the integral field spectroscopy of the complex 0.9 x 0.9 central region of Eta Car in the 1.7 microns spectral range at the limit of spectral and angular resolutions.

قيم البحث

اقرأ أيضاً

ERIS is an instrument that will both extend and enhance the fundamental diffraction limited imaging and spectroscopy capability for the VLT. It will replace two instruments that are now being maintained beyond their operational lifetimes, combine the ir functionality on a single focus, provide a new wavefront sensing module that makes use of the facility Adaptive Optics System, and considerably improve their performance. The instrument will be competitive with respect to JWST in several regimes, and has outstanding potential for studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS had its final design review in 2017, and is expected to be on sky in 2020. This contribution describes the instrument concept, outlines its expected performance, and highlights where it will most excel.
Vibrations are a key source of image degradation in ground-based instrumentation, especially for high-contrast imaging instruments. Vibrations reduce the quality of the correction provided by the adaptive optics system, blurring the science image and reducing the sensitivity of most science modules. We studied vibrations using the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument at the Subaru Telescope as it is the most vibration sensitive system installed on the telescope. We observed vibrations for all targets, usually at low frequency, below 10 Hz. Using accelerometers on the telescope, we confirmed that these vibrations were introduced by the telescope itself, and not the instrument. It was determined that they were related to the pitch of the encoders of the telescope drive system, both in altitude and azimuth, with frequencies evolving proportionally to the rotational speed of the telescope. Another strong vibration was found in the altitude axis of the telescope, around the time of transit of the target, when the altitude rotation speed is below 0.12 arcsec/s. These vibrations are amplified by the 10-Hz control loop of the telescope, especially in a region between 4 and 6 Hz. In this work, we demonstrate an accurate characterization of the frequencies of the telescope vibrations using only the coordinates -right ascension and declination- of the target, and provide a means by which we can predict them for any telescope pointing. This will be a powerful tool that can be used by more advanced wavefront control algorithms, especially predictive control, that uses informations about the disturbance to calculate the best correction.
One of the primary goals of exoplanet science is to find and characterize habitable planets, and direct imaging will play a key role in this effort. Though imaging a true Earth analog is likely out of reach from the ground, the coming generation of g iant telescopes will find and characterize many planets in and near the habitable zones (HZs) of nearby stars. Radial velocity and transit searches indicate that such planets are common, but imaging them will require achieving extreme contrasts at very small angular separations, posing many challenges for adaptive optics (AO) system design. Giant planets in the HZ may even be within reach with the latest generation of high-contrast imagers for a handful of very nearby stars. Here we will review the definition of the HZ, and the characteristics of detectable planets there. We then review some of the ways that direct imaging in the HZ will be different from the typical exoplanet imaging survey today. Finally, we present preliminary results from our observations of the HZ of {alpha} Centauri A with the Magellan AO systems VisAO and Clio2 cameras.
We present Keck II adaptive optics near infrared imaging and spectroscopic observations of the central regions of the powerful radio galaxy Cygnus A. The 0.05 resolution images clearly show an unresolved nucleus between two spectacular ionization/sca ttering cones. We report the discovery of a relatively bright (K~19) secondary point source 0.4 or 400 pc in projection southwest of the radio nucleus. The object is also visible in archival Hubble Space Telescope optical images, although it is easily confused with the underlying structure of the host. Although the near infrared colors of this secondary point source are roughly consistent with those of an L-dwarf, its spectrum and optical-to-infrared spectral energy distribution (SED) virtually rule out the possibility that it may be any foreground projected object. We conclude that the secondary point source is likely to be an extragalactic object associated with Cygnus A. We consider several interpretations of the nature of this object, including: a young star cluster peering through the dust at the edge of one of the ionization cones; an older, large globular cluster; a compact cloud of dust or electrons that is acting as a mirror of the hidden active nucleus; and the dense core of a gas stripped satellite galaxy that is merging with the giant elliptical host. The data presented here are most consistent with the minor merger scenario. The spectra and SED of the object suggest that it may be a densely packed conglomeration of older stars heavily extincted by dust, and its high luminosity and compact nature are consistent with those of a satellite that has been stripped to its tidal radius. Further spectroscopic observations are nevertheless necessary to confirm this possibility.
74 - Olivier Guyon 2005
The effects of photon noise, aliasing, wavefront chromaticity and scintillation on the point spread function (PSF) contrast achievable with ground based adaptive optics (AO) are evaluated for different wavefront sensing schemes. I show that a wavefro nt sensor (WFS) based upon the Zernike phase contrast technique offers the best sensitivity to photon noise at all spatial frequencies, while the Shack-Hartmann WFS is significantly less sensitive. In AO systems performing wavefront sensing in the visible and scientific imaging in the near-IR, the PSF contrast limit is set by the scintillation chromaticity induced by Fresnel propagation through the atmosphere. On a 8m telescope, the PSF contrast is then limited to 1e-4 to 1e-5 in the central arcsecond. Wavefront sensing and scientific imaging should therefore be done at the same wavelength, in which case, on bright sources, PSF contrasts between 1e-6 and 1e-7 can be achieved within 1 arcsecond on a 8m telescope in optical/near-IR. The impact of atmospheric turbulence parameters (seeing, wind speed, turbulence profile) on the PSF contrast is quantified. I show that a focal plane wavefront sensing scheme offers unique advantages, and I discuss how to implement it. Coronagraphic options are also briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا