ترغب بنشر مسار تعليمي؟ اضغط هنا

ERIS: revitalising an adaptive optics instrument for the VLT

341   0   0.0 ( 0 )
 نشر من قبل Richard I. Davies
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ERIS is an instrument that will both extend and enhance the fundamental diffraction limited imaging and spectroscopy capability for the VLT. It will replace two instruments that are now being maintained beyond their operational lifetimes, combine their functionality on a single focus, provide a new wavefront sensing module that makes use of the facility Adaptive Optics System, and considerably improve their performance. The instrument will be competitive with respect to JWST in several regimes, and has outstanding potential for studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS had its final design review in 2017, and is expected to be on sky in 2020. This contribution describes the instrument concept, outlines its expected performance, and highlights where it will most excel.



قيم البحث

اقرأ أيضاً

ERIS is the new AO instrument for VLT-UT4 led by a Consortium of Max-Planck Institut fuer Extraterrestrische Physik, UK-ATC, ETH-Zurich, ESO and INAF. The ERIS AO system provides NGS mode to deliver high contrast correction and LGS mode to extend hig h Strehl performance to large sky coverage. The AO module includes NGS and LGS wavefront sensors and, with VLT-AOF Deformable Secondary Mirror and Laser Facility, will provide AO correction to the high resolution imager NIX (1-5um) and the IFU spectrograph SPIFFIER (1-2.5um). In this paper we present the preliminary design of the ERIS AO system and the estimated correction performance.
We present the Phase A Science Case for the Multi-conjugate Adaptive-optics Visible Imager-Spectrograph (MAVIS), planned for the Adaptive Optics Facility (AOF) of the Very Large Telescope (VLT). MAVIS is a general-purpose instrument for exploiting th e highest possible angular resolution of any single optical telescope available in the next decade, either on Earth or in space, and with sensitivity comparable to (or better than) larger aperture facilities. MAVIS uses two deformable mirrors in addition to the deformable secondary mirror of the AOF, providing a mean V-band Strehl ratio of >10% (goal >15%) across a relatively large (30 arc second) science field. This equates to a resolution of <20mas at 550nm - comparable to the K-band diffraction limit of the next generation of extremely large telescopes, making MAVIS a genuine optical counterpart to future IR-optimised facilities like JWST and the ELT. Moreover, MAVIS will have unprecedented sky coverage for a high-order AO system, accessing at least 50% of the sky at the Galactic Pole, making MAVIS a truly general purpose facility instrument. As such, MAVIS will have both a Nyquist-sampled imager (30x30 arcsec field), and a powerful integral field spectrograph with multiple spatial and spectral modes spanning 370-1000nm. This science case presents a distilled set of thematically linked science cases drawn from the MAVIS White Papers (www.mavis-ao.org/whitepapers), selected to illustrate the driving requirements of the instrument resulting from the recent MAVIS Phase A study.
ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) is a VLT ultra-stable high resolution spectrograph that will be installed in Paranal Observatory in Chile at the end of 2017 and offered to the community by 20 18. The spectrograph will be located at the Combined-Coude Laboratory of the VLT and will be able to operate with one or (simultaneously) several of the four 8.2 m Unit Telescopes (UT) through four optical Coude trains. Combining efficiency and extreme spectroscopic precision, ESPRESSO is expected to gaining about two magnitudes with respect to its predecessor HARPS. We aim at improving the instrumental radial-velocity precision to reach the 10 cm s$^-1$ level, thus opening the possibility to explore new frontiers in the search for Earth-mass exoplanets in the habitable zone of quiet, nearby G to M-dwarfs. ESPRESSO will be certainly an important development step towards high-precision ultra-stable spectrographs on the next generation of giant telescopes such as the E-ELT.
184 - Sarah Kendrew 2012
GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. Combining beams from four telescopes, GRAVITY will provide an astrometric precision of o rder 10 micro-arcseconds, imaging resolution of 4 milli-arcseconds, and low and medium resolution spectro-interferometry, pushing its performance far beyond current infrared interfero- metric capabilities. To maximise the performance of GRAVITY, adaptive optics correction will be implemented at each of the VLT Unit Telescopes to correct for the effects of atmospheric turbulence. To achieve this, the GRAVITY project includes a development programme for four new wavefront sensors (WFS) and NIR-optimized real time control system. These devices will enable closed-loop adaptive correction at the four Unit Telescopes in the range 1.4-2.4 {mu}m. This is crucially important for an efficient adaptive optics implementation in regions where optically bright references sources are scarce, such as the Galactic Centre. We present here the design of the GRAVITY wavefront sensors and give an overview of the expected adaptive optics performance under typical observing conditions. Benefiting from newly developed SELEX/ESO SAPHIRA electron avalanche photodiode (eAPD) detectors providing fast readout with low noise in the near-infrared, the AO systems are expected to achieve residual wavefront errors of leq400 nm at an operating frequency of 500 Hz.
Vibrations are a key source of image degradation in ground-based instrumentation, especially for high-contrast imaging instruments. Vibrations reduce the quality of the correction provided by the adaptive optics system, blurring the science image and reducing the sensitivity of most science modules. We studied vibrations using the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument at the Subaru Telescope as it is the most vibration sensitive system installed on the telescope. We observed vibrations for all targets, usually at low frequency, below 10 Hz. Using accelerometers on the telescope, we confirmed that these vibrations were introduced by the telescope itself, and not the instrument. It was determined that they were related to the pitch of the encoders of the telescope drive system, both in altitude and azimuth, with frequencies evolving proportionally to the rotational speed of the telescope. Another strong vibration was found in the altitude axis of the telescope, around the time of transit of the target, when the altitude rotation speed is below 0.12 arcsec/s. These vibrations are amplified by the 10-Hz control loop of the telescope, especially in a region between 4 and 6 Hz. In this work, we demonstrate an accurate characterization of the frequencies of the telescope vibrations using only the coordinates -right ascension and declination- of the target, and provide a means by which we can predict them for any telescope pointing. This will be a powerful tool that can be used by more advanced wavefront control algorithms, especially predictive control, that uses informations about the disturbance to calculate the best correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا