ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Measurement of the Magnitude and Orientation of the Magnetic Field in Molecular Clouds

98   0   0.0 ( 0 )
 نشر من قبل Martin Houde
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Martin Houde




اسأل ChatGPT حول البحث

We demonstrate that the combination of Zeeman, polarimetry and ion-to-neutral molecular line width ratio measurements permits the determination of the magnitude and orientation of the magnetic field in the weakly ionized parts of molecular clouds. Zeeman measurements provide the strength of the magnetic field along the line of sight, polarimetry measurements give the field orientation in the plane of the sky and the ion-to-neutral molecular line width ratio determines the angle between the magnetic field and the line of sight. We apply the technique to the M17 star-forming region using a HERTZ 350 um polarimetry map and HCO+-to-HCN molecular line width ratios to provide the first three-dimensional view of the magnetic field in M17.

قيم البحث

اقرأ أيضاً

96 - Paolo Padoan 2017
The magnetic field of molecular clouds (MCs) plays an important role in the process of star formation: it determins the statistical properties of supersonic turbulence that controls the fragmentation of MCs, controls the angular momentum transport du ring the protostellar collapse, and affects the stability of circumstellar disks. In this work, we focus on the problem of the determination of the magnetic field strength. We review the idea that the MC turbulence is super-Alfv{e}nic, and we argue that MCs are bound to be born super-Alfv{e}nic. We show that this scenario is supported by results from a recent simulation of supernova-driven turbulence on a scale of 250 pc, where the turbulent cascade is resolved on a wide range of scales, including the interior of MCs.
56 - F. Heitsch 2008
We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formatio n of massive clouds but permit the build-up of cold, diffuse filaments. Fields aligned with the flows lead to substantial clouds, whose degree of fragmentation and turbulence strongly depends on the background field strength. Adding a random field component leads to a selection effect for molecular cloud formation: high column densities are only reached at locations where the field component perpendicular to the flows is vanishing. Searching for signatures of colliding flows should focus on the diffuse, warm gas, since the cold gas phase making up the cloud will have lost the information about the original flow direction because the magnetic fields redistribute the kinetic energy of the inflows.
80 - M. Dotti , M. Colpi , S. Pallini 2012
Massive black holes in galactic nuclei vary their mass M and spin vector J due to accretion. In this study we relax, for the first time, the assumption that accretion can be either chaotic, i.e. when the accretion episodes are randomly and isotropica lly oriented, or coherent, i.e. when they occur all in a preferred plane. Instead, we consider different degrees of anisotropy in the fueling, never confining to accretion events on a fixed direction. We follow the black hole growth evolving contemporarily mass, spin modulus a and spin direction. We discover the occurrence of two regimes. An early phase (M <~ 10 million solar masses) in which rapid alignment of the black hole spin direction to the disk angular momentum in each single episode leads to erratic changes in the black hole spin orientation and at the same time to large spins (a ~ 0.8). A second phase starts when the black hole mass increases above >~ 10 million solar masses and the accretion disks carry less mass and angular momentum relatively to the hole. In the absence of a preferential direction the black holes tend to spin-down in this phase. However, when a modest degree of anisotropy in the fueling process (still far from being coherent) is present, the black hole spin can increase up to a ~ 1 for very massive black holes (M >~ 100 million solar masses), and its direction is stable over the many accretion cycles. We discuss the implications that our results have in the realm of the observations of black hole spin and jet orientations.
We statistically evaluate the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic du st observed by BLASTPol at 250, 350, and 500 micron, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 arcminutes that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between the trends in relative orientation and the shape of the column density probability distribution functions. In the sub-regions of Vela C dominated by one clear filamentary structure, or ridges, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or nests, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.
We present three numerical simulations of randomly driven, isothermal, non-magnetic, self-gravitating turbulence with different rms Mach numbers Ms and physical sizes L, but approximately the same value of the virial parameter, alpha approx 1.2. We o btain the following results: a) We test the hypothesis that the collapsing centers originate from locally Jeans-unstable (super-Jeans), subsonic fragments; we find no such structures. b) We find that the fraction of small-scale super-Jeans structures is larger in the presence of self-gravity. c) The velocity divergence of subregions of the simulations exhibits a negative correlation with their mean density. d) The density probability density function (PDF) deviates from a lognormal in the presence of self-gravity. e) Turbulence alone in the large-scale simulation does not produce regions with the same size and mean density as those of the small-scale simulation. Items (b)-(e) suggest that self-gravity is not only involved in causing the collapse of Jeans-unstable density fluctuations produced by the turbulence, but also in their {it formation}. We also measure the star formation rate per free-fall time, as a function of Ms for the three runs, and compare with the predictions of recent semi-analytical models. We find marginal agreement to within the uncertainties of the measurements. However, the hypotheses of those models neglect the net negative divergence of dense regions we find in our simulations. We conclude that a) part of the observed velocity dispersion in clumps must arise from clump-scale inwards motions, and b) analytical models of clump and star formation need to take into account this dynamical connection with the external flow and the fact that, in the presence of self-gravity, the density PDF may deviate from a lognormal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا