ﻻ يوجد ملخص باللغة العربية
Scattered light images of the optically thin dust disk around the 5 Myr old star HD141569 have revealed its complex asymmetric structure. We show in this paper that the surface density inferred from the observations presents similarities with that expected from a circumprimary disk within a highly eccentric binary system. We assume that either the two M stars in the close vicinity of HD141569 are bound companions or at least one of them is an isolated binary companion. We discuss the resulting interaction with an initially axisymmetric disk. This scenario accounts for the formation of a spiral structure, a wide gap in the disk and a broad faint extension outside the truncation radius of the disk after 10-15 orbital periods with no need for massive companion(s) in the midst of the disk resolved in scattered light. The simulations match the observations and the star age if the perturber is on an elliptic orbit with a periastron distance of 930 AU and an eccentricity from 0.7 to 0.9. We find that the numerical results can be reasonably well reproduced using an analytical approach proposed to explain the formation of a spiral structure by secular perturbation of a circumprimary disk by an external bound companion. We also interpret the redness of the disk in the visible reported by Clampin et al.(2003) and show that short-lived grains one order of magnitude smaller than the blow-out size limit are abundant in the disk. The most probable reason for this is that the disk sustains high collisional activity. Finally we conclude that additional processes are required to clear out the disk inside 150 AU and that interactions with planetary companions possibly coupled with the remnant gas disk are likely candidates.
We present archival ALMA observations of the HD 141569 circumstellar disk at 345, 230, and 100 GHz. These data detect extended millimeter emission that is exterior to the inner disk. We find through simultaneous visibility modeling of all three data
We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with HST/STIS coronagraphy, wa
We obtained polarimetric differential imaging of a gas-rich debris disk around HD 141569A with SPHERE in the H-band to compare the scattering properties of the innermost ring at 44 au with former observations in total intensity with the same instrume
HD$,$169142 is an excellent target to investigate signs of planet-disk interaction due to the previous evidence of gap structures. We performed J-band (~1.2{mu}m) polarized intensity imaging of HD169142 with VLT/SPHERE. We observe polarized scattered
Stellar astrophysicists are increasingly taking into account the effects of orbiting companions on stellar evolution. New discoveries, many thanks to systematic time-domain surveys, have underlined the role of binary star interactions in a range of a