ﻻ يوجد ملخص باللغة العربية
In the last decade we have come to realize that the traditional classification of stellar clusters into open and globular clusters cannot be easily extended beyond the realm of the Milky Way, and that even for our Galaxy it is not fully valid. The main failure of the traditional classification is the existence of Massive Young Clusters (MYCs), which are massive like Globular Clusters (GCs) but also young like open clusters. We describe here the mass and age distributions of clusters in general with an emphasis on MYCs. We also discuss the issue of what constitutes a cluster and try to establish a general classification scheme.
We have retrieved multicolor WFPC2/HST data from the STScI archive for 27 nearby Massive (>= 3x10^4 M_Sun) Young (< 20 Myr) star Clusters (MYCs). The data represents the most-complete-to-date sample of clearly resolved MYCs. We have analyzed their st
We have carried out a search for massive white dwarfs (WDs) in the direction of young open star clusters using the Gaia DR2 database. The aim of this survey was to provide robust data for new and previously known high-mass WDs regarding cluster membe
Young massive clusters (YMCs) differ markedly from old globular clusters in featuring extended, rather than tidally truncated, envelopes. Their projected- luminosity profiles are well fit by Elson-Fall-Freeman (EFF) models with core radii of 0.3 pc <
Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models provide a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular c
We use integrated-light spectroscopic observations to measure metallicities and chemical abundances for two extragalactic young massive star clusters (NGC1313-379 and NGC1705-1). The spectra were obtained with the X-Shooter spectrograph on the ESO Ve