ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical abundances of two extragalactic young massive clusters

68   0   0.0 ( 0 )
 نشر من قبل Svea Hernandez
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use integrated-light spectroscopic observations to measure metallicities and chemical abundances for two extragalactic young massive star clusters (NGC1313-379 and NGC1705-1). The spectra were obtained with the X-Shooter spectrograph on the ESO Very Large Telescope. We compute synthetic integrated-light spectra, based on colour-magnitude diagrams for the brightest stars in the clusters from Hubble Space Telescope photometry and theoretical isochrones. Furthermore, we test the uncertainties arising from the use of Colour Magnitude Diagram (CMD) +Isochrone method compared to an Isochrone-Only method. The abundances of the model spectra are iteratively adjusted until the best fit to the observations is obtained. In this work we mainly focus on the optical part of the spectra. We find metallicities of [Fe/H] = $-$0.84 $pm$ 0.07 and [Fe/H] = $-$0.78 $pm$ 0.10 for NGC1313-379 and NGC1705-1, respectively. We measure [$alpha$/Fe]=$+$0.06 $pm$ 0.11 for NGC1313-379 and a super-solar [$alpha$/Fe]=$+$0.32 $pm$ 0.12 for NGC1705-1. The roughly solar [$alpha$/Fe] ratio in NGC1313-379 resembles those for young stellar populations in the Milky Way (MW) and the Magellanic Clouds, whereas the enhanced [$alpha$/Fe] ratio in NGC1705-1 is similar to that found for the cluster NGC1569-B by previous studies. Such super-solar [$alpha$/Fe] ratios are also predicted by chemical evolution models that incorporate the bursty star formation histories of these dwarf galaxies. Furthermore, our $alpha$-element abundances agree with abundance measurements from H II regions in both galaxies. In general we derive Fe-peak abundances similar to those observed in the MW and Large Magellanic Cloud (LMC) for both young massive clusters. For these elements, however, we recommend higher-resolution observations to improve the Fe-peak abundance measurements.

قيم البحث

اقرأ أيضاً

We present a study of the effective (half-light) radii and other structural properties of a systematically selected sample of young, massive star clusters (YMCs, $geq$$5times10^3$ M$_{odot}$ and $leq$200 Myr) in two nearby spiral galaxies, NGC 628 an d NGC 1313. We use Hubble Space Telescope WFC3/UVIS and archival ACS/WFC data obtained by the Legacy Extragalactic UV Survey (LEGUS), an HST Treasury Program. We measure effective radii with GALFIT, a two-dimensional image-fitting package, and with a new technique to estimate effective radii from the concentration index (CI) of observed clusters. The distribution of effective radii from both techniques spans $sim$0.5-10 pc and peaks at 2-3 pc for both galaxies. We find slight positive correlations between effective radius and cluster age in both galaxies, but no significant relationship between effective radius and galactocentric distance. Clusters in NGC 1313 display a mild increase in effective radius with cluster mass, but the trend disappears when the sample is divided into age bins. We show that the vast majority of the clusters in both galaxies are much older than their dynamical times, suggesting they are gravitationally bound objects. We find that about half of the clusters in NGC 628 are underfilling their Roche lobes, based on their Jacobi radii. Our results suggest that the young, massive clusters in NGC 628 and NGC 1313 are expanding due to stellar mass loss or two-body relaxation and are not significantly influenced by the tidal fields of their host galaxies.
We perform a detailed abundance analysis on integrated-light spectra of 20 globular clusters (GCs) in the early-type galaxy NGC 5128 (Centaurus A). The GCs were observed with X-Shooter on the VLT. The cluster sample spans a metallicity range of $-1.9 2 < $ [Fe/H] $< -0.13$ dex. Using theoretical isochrones we compute synthetic integrated-light spectra and iterate the individual abundances until the best fit to the observations is obtained. We measured abundances of Mg, Ca, and Ti, and find a slightly higher enhancement in NGC 5128 GCs with metallicities [Fe/H] < $-$0.75 dex, of the order of $sim$0.1 dex, than in the average values observed in the MW for GCs of the same metallicity. If this $alpha$-enhancement in the metal-poor GCs in NGC 5128 is genuine, it could hint at a chemical enrichment history different than that experienced by the MW. We also measure Na abundances in 9 out of 20 GCs. We find evidence for intra-cluster abundance variations in 6 of these clusters where we see enhanced [Na/Fe] > $+$0.25 dex. We obtain the first abundance measurements of Cr, Mn, and Ni for a sample of the GC population in NGC 5128 and find consistency with the overall trends observed in the MW, with a slight enhancement ($<$0.1 dex) in the Fe-peak abundances measured in the NGC 5128.
Well studied Open Clusters (OCs) in the Solar neighbourhood are used as reference objects to test galactic and stellar theories. For that purpose their chemical composition needs to be known with a high level of confidence. The aims of this work are (1) to determine accurate and precise abundances of 22 chemical species (from Na to Eu) in the Hyades, Praesepe and Rupecht 147 using a large number of stars at different evolutionary states, (2) to evaluate the level of chemical homogeneity of these OCs, (3) to compare their chemical signatures. We gathered $sim$800 high resolution and high S/N spectra of $sim$100 members in the three OCs, obtained with the latest memberships based on Gaia DR2 data. We build a pipeline which computes atmospheric parameters and strictly line-by-line differential abundances among twin stars in our sample, which allows us to reach a very high precision in the abundances (0.01-0.02 dex in most of the elements). We find large differences in the absolute abundances in some elements, which can be attributed to diffusion, NLTE effects or systematics in the analysis. For the three OCs, we find strong correlations in the differential abundances between different pairs of elements, which can be explained by some level of chemical inhomogeneity. We compare differential abundances of several stars from the Hyades and Praesepe tails: the stars that differ more in chemical abundances also have distinct kinematics, even though they have been identified as members of the tail. With this technique we find that the Hyades and Preasepe have the same chemical signature when G dwarfs and K giants are considered. Despite a certain level of inhomogeneity in each cluster, it is still possible to clearly distinguish the chemical signature of the older cluster Ruprecht~147 when compared to the others.
Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models provide a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular c louds. The conversion from gas to stars being incomplete, the left over gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with mbox{N-body simulations, to reveal} evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.
Young massive clusters (YMCs) are the most intense regions of star formation in galaxies. Formulating a model for YMC formation whilst at the same time meeting the constraints from observations is highly challenging however. We show that forming YMCs requires clouds with densities $gtrsim$ 100 cm$^{-3}$ to collide with high velocities ($gtrsim$ 20 km s$^{-1}$). We present the first simulations which, starting from moderate cloud densities of $sim100$ cm$^{-3}$, are able to convert a large amount of mass into stars over a time period of around 1 Myr, to produce dense massive clusters similar to those observed. Such conditions are commonplace in more extreme environments, where YMCs are common, but atypical for our Galaxy, where YMCs are rare.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا