ترغب بنشر مسار تعليمي؟ اضغط هنا

The Structure of Cold Molecular Cloud Cores

120   0   0.0 ( 0 )
 نشر من قبل Derek Ward-Thompson
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A brief summary is presented of our current knowledge of the structure of cold molecular cloud cores that do not contain protostars, sometimes known as starless cores. The most centrally condensed starless cores are known as pre-stellar cores. These cores probably represent observationally the initial conditions for protostellar collapse that must be input into all models of star formation. The current debate over the nature of core density profiles is summarised. A cautionary note is sounded over the use of such profiles to ascertain the equilibrium status of cores. The magnetic field structure of pre-stellar cores is also discussed.



قيم البحث

اقرأ أيضاً

116 - M. Juvela 2011
We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and th e coupling between gas and dust. We show that variations in the gas phase abundances, the grain size distribution, and the velocity field can each change the predicted core temperatures by one or two degrees. We emphasize the role of non-local radiative transfer effects that often are not taken into account, for example, when modelling the core chemistry. These include the radiative coupling between regions of different temperature and the enhanced line cooling near the cloud surface. The uncertainty of the temperature profiles does not necessarily translate to a significant error in the column density derived from observations. However, depletion processes are very temperature sensitive and a two degree difference can mean that a given molecule no longer traces the physical conditions in the core centre.
We discuss the lifetimes and evolution of clumps and cores formed as turbulent density fluctuations in nearly isothermal molecular clouds. In the non-magnetic case, clumps are unlikely to reach a hydrostatic state, and instead are expected to either proceed directly to collapse, or else ``rebound towards the mean pressure and density of the parent cloud. Rebounding clumps are delayed in their re-expansion by their self-gravity. From a simple virial calculation, we find re-expansion times of a few free-fall times. In the magnetic case, we present a series of driven-turbulence, ideal-MHD isothermal numerical simulations in which we follow the evolution of clumps and cores in relation to the magnetic criticality of their ``parent clouds (the numerical boxes). In subcritical boxes, magnetostatic clumps do not form. A few moderately-gravitationally bound clumps form which however are dispersed by the turbulence in < 1.3 Myr. An estimate of the ambipolar diffusion (AD) time scale t_AD in these cores gives t_AD > 1.3 Myr, only slightly longer than the dynamical times. In supercritical boxes, some cores become locally supercritical and collapse in typical times ~ 1 Myr. We also observe longer-lived supercritical cores that however do not collapse because they are smaller than the local Jeans length. Fewer clumps and cores form in these simulations than in their non-magnetic counterpart. Our results suggest that a) A fraction of the cores may not form stars, and may correspond to some of the observed starless cores. b) Cores may be out-of-equilibrium structures, rather than quasi-magnetostatic ones. c) The magnetic field may help reduce the star formation efficiency by reducing the probability of core formation, rather than by significantly delaying the collapse of individual cores.
We examine the cloud structure around the Planck detections in 71 fields observed with the Herschel SPIRE instrument. We wish to determine the general physical characteristics of the fields and to examine the morphology of the clouds where the cold h igh column density clumps are found. We derive colour temperature and column density maps of the fields. We examine the infrared spectral energy distributions of the main clumps. The clouds are categorised according to their large scale morphology. With the help of recently released WISE satellite data, we look for signs of enhanced mid-infrared scattering (coreshine), an indication of growth of the dust grains, and examine the star formation activity associated with the cold clumps. The mapped clouds have distances ranging from ~100pc to several kiloparsecs and cover a range of sizes and masses from cores of less than 10 solar masses to clouds with masses in excess of 10000 solar mass. Most fields contain some filamentary structures and in about half of the cases a filament or a few filaments dominate the morphology. In one case out of ten, the clouds show a cometary shape or have sharp boundaries indicative of compression by an external force. The width of the filaments is typically ~0.2-0.3pc. However, there is significant variation from 0.1pc to 1pc and the estimates are sensitive to the methods used and the very definition of a filament. Enhanced mid-infrared scattering, coreshine, was detected in four clouds with six additional tentative detections. The cloud LDN183 is included in our sample and remains the best example of this phenomenon. About half of the fields are associated with active star formation as indicated by the presence of mid-infrared point sources. The mid-infrared sources often coincide with structures whose sub-millimetre spectra are still dominated by the cold dust.
In this paper, we review some of the properties of dense molecular cloud cores. The results presented here rely on three-dimensional numerical simulations of isothermal, magnetized, turbulent, and self-gravitating molecular clouds (MCs) in which dens e core form as a consequence of the gravo-turbulent fragmentation of the clouds. In particular we discuss issues related to the mass spectrum of the cores, their lifetimes and their virial balance.
The Galactic Center 50 km s$^{-1}$ Molecular Cloud (50MC) is the most remarkable molecular cloud in the Sagittarius A region. This cloud is a candidate for the massive star formation induced by cloud-cloud collision (CCC) with a collision velocity of $sim30rm~km~s^{-1}$ that is estimated from the velocity dispersion. We observed the whole of the 50MC with a high angular resolution ($sim2.0times1.4$) in ALMA cycle 1 in the H$^{13}$CO$^+~J=1-0$ and ${rm C^{34}S}~J=2-1$ emission lines. We identified 241 and 129 bound cores with a virial parameter of less than 2, which are thought to be gravitationally bound, in the H$^{13}$CO$^+$ and ${rm C^{34}S}$ maps using the clumpfind algorithm, respectively. In the CCC region, the bound ${rm H^{13}CO^+}$ and ${rm C^{34}S}$ cores are 119 and 82, whose masses are $68~%$ and $76~%$ of those in the whole 50MC, respectively. The distribution of the core number and column densities in the CCC are biased to larger densities than those in the non-CCC region. The distributions indicate that the CCC compresses the molecular gas and increases the number of the dense bound cores. Additionally, the massive bound cores with masses of $>3000~M_{odot}$ exist only in the CCC region, although the slope of the core mass function (CMF) in the CCC region is not different from that in the non-CCC region. We conclude that the compression by the CCC efficiently formed massive bound cores even if the slope of the CMF is not changed so much by the CCC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا