ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation and Properties of Molecular Cloud Cores

157   0   0.0 ( 0 )
 نشر من قبل Sami Dib
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we review some of the properties of dense molecular cloud cores. The results presented here rely on three-dimensional numerical simulations of isothermal, magnetized, turbulent, and self-gravitating molecular clouds (MCs) in which dense core form as a consequence of the gravo-turbulent fragmentation of the clouds. In particular we discuss issues related to the mass spectrum of the cores, their lifetimes and their virial balance.

قيم البحث

اقرأ أيضاً

122 - J. Syed 2020
Molecular clouds, which harbor the birthplaces of stars, form out of the atomic phase of the interstellar medium (ISM). We aim to characterize the atomic and molecular phases of the ISM and set their physical properties into the context of cloud form ation processes. We studied the cold neutral medium (CNM) by means of $rm HI$ self-absorption (HISA) toward the giant molecular filament GMF20.0-17.9 and compared our results with molecular gas traced by $^{13}rm CO$ emission. We fitted baselines of HISA features to $rm HI$ emission spectra using first and second order polynomial functions. The CNM identified by this method spatially correlates with the morphology of the molecular gas toward the western region. However, no spatial correlation between HISA and $^{13}rm CO$ is evident toward the eastern part of the filament. The distribution of HISA peak velocities and line widths agrees well with $^{13}rm CO$ within the whole filament. The column density probability density functions (N-PDFs) of HISA (CNM) and $rm HI$ emission (tracing both the CNM and the warm neutral medium, WNM) have a log-normal shape for all parts of the filament, indicative of turbulent motions as the main driver for these structures. The $rm H_2$ N-PDFs show a broad log-normal distribution with a power-law tail suggesting the onset of gravitational contraction. The saturation of $rm HI$ column density is observed at $sim$25$rm,M_{odot},pc^{-2}$. We conjecture that different evolutionary stages are evident within the filament. In the eastern region, we witness the onset of molecular cloud formation out of the atomic gas reservoir while the western part is more evolved, as it reveals pronounced $rm H_2$ column density peaks and signs of active star formation.
70 - F. Massi 2019
Context The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size 19.2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 Msun. Results We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1--6 pc is also found, hinting at fractionation of magnetised, turbulent gas.
We aim to reveal the physical properties and chemical composition of the cores in the California molecular cloud (CMC), so as to better understand the initial conditions of star formation. We made a high-resolution column density map (18.2) with Hers chel data, and extracted a complete sample of the cores in the CMC with the textsl{fellwalker} algorithm. We performed new single-pointing observations of molecular lines near 90 GHz with the IRAM 30m telescope along the main filament of the CMC. In addition, we also performed a numerical modeling of chemical evolution for the cores under the physical conditions. We extracted 300 cores, of which 33 are protostellar and 267 are starless cores. About 51% (137 of 267) of the starless cores are prestellar cores. Three cores have the potential to evolve into high-mass stars. The prestellar core mass function (CMF) can be well fit by a log-normal form. The high-mass end of the prestellar CMF shows a power-law form with an index $alpha=-0.9pm 0.1$ that is shallower than that of the Galactic field stellar mass function. Combining the mass transformation efficiency ($varepsilon$) from the prestellar core to the star of $15pm 1%$ and the core formation efficiency (CFE) of 5.5%, we suggest an overall star formation efficiency of about 1% in the CMC. In the single-pointing observations with the IRAM 30m telescope, we find that 6 cores show blue-skewed profile, while 4 cores show red-skewed profile. [$rm {HCO}^{+}$]/[HNC] and [$rm {HCO}^{+}$]/$rm [N_{2}H^{+}]$ in protostellar cores are higher than those in prestellar cores; this can be used as chemical clocks. The best-fit chemical age of the cores with line observations is $sim 5times 10^4$~years.
We discuss the lifetimes and evolution of clumps and cores formed as turbulent density fluctuations in nearly isothermal molecular clouds. In the non-magnetic case, clumps are unlikely to reach a hydrostatic state, and instead are expected to either proceed directly to collapse, or else ``rebound towards the mean pressure and density of the parent cloud. Rebounding clumps are delayed in their re-expansion by their self-gravity. From a simple virial calculation, we find re-expansion times of a few free-fall times. In the magnetic case, we present a series of driven-turbulence, ideal-MHD isothermal numerical simulations in which we follow the evolution of clumps and cores in relation to the magnetic criticality of their ``parent clouds (the numerical boxes). In subcritical boxes, magnetostatic clumps do not form. A few moderately-gravitationally bound clumps form which however are dispersed by the turbulence in < 1.3 Myr. An estimate of the ambipolar diffusion (AD) time scale t_AD in these cores gives t_AD > 1.3 Myr, only slightly longer than the dynamical times. In supercritical boxes, some cores become locally supercritical and collapse in typical times ~ 1 Myr. We also observe longer-lived supercritical cores that however do not collapse because they are smaller than the local Jeans length. Fewer clumps and cores form in these simulations than in their non-magnetic counterpart. Our results suggest that a) A fraction of the cores may not form stars, and may correspond to some of the observed starless cores. b) Cores may be out-of-equilibrium structures, rather than quasi-magnetostatic ones. c) The magnetic field may help reduce the star formation efficiency by reducing the probability of core formation, rather than by significantly delaying the collapse of individual cores.
The properties of the first-discovered interstellar object (ISO), 1I/2017 (`Oumuamua), differ from both Solar System asteroids and comets, casting doubt on a protoplanetary disk origin. In this study, we investigate the possibility that it formed wit h a substantial H2 ice component in the starless core of a giant molecular cloud. While interstellar solid hydrogen has yet to be detected, this constituent would explain a number of the ISOs properties. We consider the relevant processes required to build decameter-sized, solid hydrogen bodies and assess the plausibility of growth in various size regimes. Via an energy balance argument, we find that the most severe barrier to formation is the extremely low temperature required for the favorability of molecular hydrogen ice. However, if deposition occurs, we find that the turbulence within starless cores is conducive for growth into kilometer-sized bodies on sufficiently short timescales. Then, we analyze mass loss in the interstellar medium and determine the necessary size for a hydrogen object to survive a journey to the Solar System as a function of ISO age. Finally, we discuss the implications if the H2 explanation is correct, and we assess the future prospects of ISO science. If hydrogen ice ISOs do exist, our hypothesized formation pathway would require a small population of porous, 100 micron dust in a starless core region that has cooled to 2.8K via adiabatic expansion of the surrounding gas and excellent shielding from electromagnetic radiation and cosmic rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا