ﻻ يوجد ملخص باللغة العربية
We present and analyse spectra of the Type IIn supernova 1994W obtained between 18 and 202 days after explosion. During the first 100 days the line profiles are composed of three major components: (i) narrow P Cygni lines with absorption minima at -700 km/s; (ii) broad emission lines with BVZI ~4000 km/s; (iii) broad wings most apparent in H-alpha. These components are identified with the expanding circumstellar (CS) envelope (Sollerman, Cumming & Lundqvist 1998), shocked cool gas in the forward postshock region, and multiple Thomson scattering in the CS envelope, respectively. The absence of broad P Cygni lines from the supernova (SN) is the result of the formation of an optically thick, cool, dense shell at the interface of the ejecta and the CS envelope. Models of the SN deceleration and Thomson scattering wings are used to recover the Thomson optical depth of the CS envelope and its radial extent, 4E15 cm. The light curve, which we reproduce by a hydrodynamical model, is powered by a combination of internal energy leakage after the explosion of an extended presupernova (~1E15 cm) and luminosity from circumstellar interaction. We recover the pre-explosion kinematics of the CS envelope and find it to be close to homologous expansion with outmost velocity ~1100 km/s and a kinematic age of ~1.5 yr. The high mass and kinetic energy of the CS envelope strongly suggest that the CS envelope was explosively ejected only a few years before explosion.
We present and analyse spectra of the Type IIn supernova 1994W obtained between 18 and 203 days after explosion. During the luminous phase (first 100 d) the line profiles are composed of three major components: (i) narrow P-Cygni lines with the absor
In this paper we analyse the pre-explosion spectrum of SN2015bh by performing radiative transfer simulations using the CMFGEN code. This object has attracted significant attention due to its remarkable similarity to SN2009ip in both its pre- and post
We present Hubble Space Telescope imaging of a pre-explosion counterpart to SN 2019yvr obtained 2.6 years before its explosion as a type Ib supernova (SN Ib). Aligning to a post-explosion Gemini-S/GSAOI image, we demonstrate that there is a single so
We report optical and mid-infrared photometry of SN 1980K between 2004 and 2010, which show slow monotonic fading consistent with previous spectroscopic and photometric observations made 8 to 17 years after outburst. The slow rate-of-change over two
We present an optical and near-infrared photometric and spectroscopic study of supernova (SN) 2009kn spanning ~1.5 yr from the discovery. The optical spectra are dominated by the narrow (full width at half-maximum ~1000 km s^-1) Balmer lines distinct