ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the matter distribution within z=0.2 cluster lenses with XMM-Newton

294   0   0.0 ( 0 )
 نشر من قبل Philippe B. Marty
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of 7 clusters observed by XMM as part of our survey of 17 most X-ray luminous clusters of galaxies at z=0.2 selected for a comprehensive and unbiased study of the mass distribution in massive clusters. Using public software, we have set up an automated pipeline to reduce the EPIC MOS & pn spectro-imaging data, optimized for extended sources analysis. We also developped a code to perform intensive spectral and imaging analysis particularly focussing on proper background estimate and removal. XMM deep spectro-imaging of these clusters allowed us to fit a standard beta-model to their gas emission profiles as well as a standard MEKAL emission model to their extracted spectra, and test their inferred characteristics against already calibrated relations.



قيم البحث

اقرأ أيضاً

We present measurements of the X-ray observables of the intra-cluster medium (ICM), including luminosity $L_X$, ICM mass $M_{ICM}$, emission-weighted mean temperature $T_X$, and integrated pressure $Y_X$, that are derived from XMM-Newton X-ray observ ations of a Sunyaev-Zeldovich Effect (SZE) selected sample of 59 galaxy clusters from the South Pole Telescope SPT-SZ survey that span the redshift range of $0.20 < z < 1.5$. We constrain the best-fit power law scaling relations between X-ray observables, redshift, and halo mass. The halo masses are estimated based on previously published SZE observable to mass scaling relations, calibrated using information that includes the halo mass function. Employing SZE-based masses in this sample enables us to constrain these scaling relations for massive galaxy clusters ($M_{500}geq 3 times10^{14}$ $M_odot$) to the highest redshifts where these clusters exist without concern for X-ray selection biases. We find that the mass trends are steeper than self-similarity in all cases, and with $geq 2.5{sigma}$ significance in the case of $L_X$ and $M_{ICM}$. The redshift trends are consistent with the self-similar expectation, but the uncertainties remain large. Core-included scaling relations tend to have steeper mass trends for $L_X$. There is no convincing evidence for a redshift-dependent mass trend in any observable. The constraints on the amplitudes of the fitted scaling relations are currently limited by the systematic uncertainties on the SZE-based halo masses, however the redshift and mass trends are limited by the X-ray sample size and the measurement uncertainties of the X-ray observables.
97 - M. Arnaud 2000
Using the PV observation of A1795, we illustrate the capability of XMM-EPIC to measure cluster temperature profiles, a key ingredient for the determination of cluster mass profiles through the equation of hydrostatic equilibrium. We develop a methodo logy for spatially resolved spectroscopy of extended sources, adapted to XMM background and vignetting characteristics. The effect of the particle induced background is discussed. A simple unbiased method is proposed to correct for vignetting effects, in which every photon is weighted according to its energy and location on the detector. We were able to derive the temperature profile of A1795 up to 0.4 times the virial radius. A significant and spatially resolved drop in temperature towards the center (r<200 kpc) is observed, which corresponds to the cooling flow region of the cluster. Beyond that region, the temperature is constant with no indication of a fall-off at large radii out to 1.2 Mpc.
We present a pilot X-ray study of the five most massive ($M_{500}>5 times 10^{14} M_{odot}$), distant (z~1), galaxy clusters detected via the Sunyaev-Zeldovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the t hroughput of XMM to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, constrained in the centre by Chandra and in the outskirts by XMM. We show that the Chandra-XMM combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM sensitivity allowing higher significance detection of faint substructures. The sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM density profiles and spatially-resolved temperature profiles to investigate thermodynamic quantities including entropy and pressure. From comparison of the scaled profiles with the local REXCESS sample, we find no significant departure from standard self-similar evolution, within the dispersion, at any radius, except for the entropy beyond 0.7$R_{500}$. The baryon mass fraction tends towards the cosmic value, with a weaker dependence on mass than observed in the local Universe. We compare with predictions from numerical simulations. The present pilot study demonstrates the utility and feasibility of spatially-resolved analysis of individual objects at high-redshift through the combination of XMM and Chandra observations. Observations of a larger sample will allow a fuller statistical analysis to be undertaken, in particular of the intrinsic scatter in the structural and scaling properties of the cluster population. (abridged)
69 - D.M. Neumann 2002
We present in this paper a substructure and spectroimaging study of the Coma cluster of galaxies based on XMM-Newton data. XMM-Newton performed a mosaic of observations of Coma to ensure a large coverage of the cluster. We add the different pointings together and fit elliptical beta-models to the data. We subtract the cluster models from the data and look for residuals, which can be interpreted as substructure. We find several significant structures: the well-known subgroup connected to NGC4839 in the South-West of the cluster, and another substructure located between NGC 4839 and the centre of the Coma cluster. Constructing a hardness ratio image, which can be used as a temperature map we see that in front of this new structure the temperature is significantly increased (higher or equal 10 keV). We interpret this temperature enhancement as the result of heating as this structure falls onto the Coma cluster. We furthermore reconfirm the filament-like structure South-East of the cluster centre. This region is significantly cooler than the mean cluster temperature. We estimate the temperature of this structure to be equal or below 1keV. A possible scenario to explain the observed features is stripping caused by the infall of a small group of galaxies located around the two galaxies NGC4921 and NGC4911 into the Coma cluster with a non-zero impact parameter. We also see significant X-ray depressions North and South-East of NGC4921, which might either be linked to tidal forces due to the merger with the Western structure or connected to an older cluster merger.
67 - S. Majerowicz 2004
(abridged) We present a study based on XMM data of RX J0256.5+0006, a medium distant (z=0.36) galaxy cluster found in the Bright SHARC catalog. The intracluster medium shows a bimodal structure: one main cluster component and a substructure in the we st. Despite the indication of interaction we do not find any sign of temperature gradients. Due to the non-symmetric form of the main cluster we extract surface brightness profiles in different sectors around its centre. We see large variations between the profiles, which we quantify by beta-model fitting. The corresponding r_cs vary between 0.1-0.5Mpc and the betas between 0.5-1.2. The variations of the beta-model parameters indicate that the main cluster is not entirely relaxed. This hypothesis is strengthened by the fact that the cluster is over-luminous with respect to the (z-evolving) L_x-T relation found for nearby clusters. Comparing our profiles to the reference emission measure profile of Arnaud et al., we find that only the profile extracted north-east (NE) of the main cluster centre is similar to this reference profile. This indicates that only the NE profile is representative for the relaxed part of this cluster component. Using this profile and the spectroscopically fitted temperature of T=4.9^+0.5_-0.4keV we find M_500~4 10^14 solar masses. This value is in agreement with the value obtained using the z-evolving M_500-T relation from the HIFLUGCS sample. For the gas mass fraction we find f_g~18-20% which is in good agreement with other work. We also develop a simple on-axis merger model for the cluster. Together with a simple ram pressure model we find that the most likely physical distance of the subcluster to the main cluster lies between 0.6<d<1.0Mpc. We find for the ratio of subcluster to main cluster mass values between 20-30%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا