ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving galaxy cluster gas properties at z~1 with XMM-Newton and Chandra

104   0   0.0 ( 0 )
 نشر من قبل Iacopo Bartalucci
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a pilot X-ray study of the five most massive ($M_{500}>5 times 10^{14} M_{odot}$), distant (z~1), galaxy clusters detected via the Sunyaev-Zeldovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, constrained in the centre by Chandra and in the outskirts by XMM. We show that the Chandra-XMM combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM sensitivity allowing higher significance detection of faint substructures. The sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM density profiles and spatially-resolved temperature profiles to investigate thermodynamic quantities including entropy and pressure. From comparison of the scaled profiles with the local REXCESS sample, we find no significant departure from standard self-similar evolution, within the dispersion, at any radius, except for the entropy beyond 0.7$R_{500}$. The baryon mass fraction tends towards the cosmic value, with a weaker dependence on mass than observed in the local Universe. We compare with predictions from numerical simulations. The present pilot study demonstrates the utility and feasibility of spatially-resolved analysis of individual objects at high-redshift through the combination of XMM and Chandra observations. Observations of a larger sample will allow a fuller statistical analysis to be undertaken, in particular of the intrinsic scatter in the structural and scaling properties of the cluster population. (abridged)



قيم البحث

اقرأ أيضاً

We examine the reconstruction of galaxy cluster radial density profiles obtained from Chandra and XMM X-ray observations, using high quality data for a sample of twelve objects covering a range of morphologies and redshifts. By comparing the results obtained from the two observatories and by varying key aspects of the analysis procedure, we examine the impact of instrumental effects and of differences in the methodology used in the recovery of the density profiles. We find that the final density profile shape is particularly robust. We adapt the photon weighting vignetting correction method developed for XMM for use with Chandra data, and confirm that the resulting Chandra profiles are consistent with those corrected a posteriori for vignetting effects. Profiles obtained from direct deprojection and those derived using parametric models are consistent at the 1% level. At radii larger than $sim$6, the agreement between Chandra and XMM is better than 1%, confirming an excellent understanding of the XMM PSF. We find no significant energy dependence. The impact of the well-known offset between Chandra and XMM gas temperature determinations on the density profiles is found to be negligible. However, we find an overall normalisation offset in density profiles of the order of $sim$2.5%, which is linked to absolute flux cross-calibration issues. As a final result, the weighted ratios of Chandra to XMM gas masses computed at R2500 and R500 are r=1.03$pm$0.01 and r=1.03$pm$0.03, respectively. Our study confirms that the radial density profiles are robustly recovered, and that any differences between Chandra and XMM can be constrained to the $sim$ 2.5% level, regardless of the exact data analysis details. These encouraging results open the way for the true combination of X-ray observations of galaxy clusters, fully leveraging the high resolution of Chandra and the high throughput of XMM.
We present an analysis of deep XMM-Newton and Chandra observations of the z=1.05 galaxy cluster XLSSJ022403.9-041328 (hereafter XLSSC 029), detected in the XMM-Newton large scale structure survey. Density and temperature profiles of the X-ray emittin g gas were used to perform a hydrostatic mass analysis of the system. This allowed us to measure the total mass and gas fraction in the cluster and define overdensity radii R500 and R2500. The global properties of XLSSC 029 were measured within these radii and compared with those of the local population. The gas mass fraction was found to be consistent with local clusters. The mean metal abundance was 0.18 +0.17 -0.15 Zsol, with the cluster core regions excluded, consistent with the predicted and observed evolution. The properties of XLSSC 029 were then used to investigate the position of the cluster on the M-kT, YX-M, and LX-M scaling relations. In all cases the observed properties of XLSSC 029 agreed well with the simple self-similar evolution of the scaling relations. This is the first test of the evolution of these relations at z > 1 and supports the use of the scaling relations in cosmological studies with distant galaxy clusters.
We present measurements of the X-ray observables of the intra-cluster medium (ICM), including luminosity $L_X$, ICM mass $M_{ICM}$, emission-weighted mean temperature $T_X$, and integrated pressure $Y_X$, that are derived from XMM-Newton X-ray observ ations of a Sunyaev-Zeldovich Effect (SZE) selected sample of 59 galaxy clusters from the South Pole Telescope SPT-SZ survey that span the redshift range of $0.20 < z < 1.5$. We constrain the best-fit power law scaling relations between X-ray observables, redshift, and halo mass. The halo masses are estimated based on previously published SZE observable to mass scaling relations, calibrated using information that includes the halo mass function. Employing SZE-based masses in this sample enables us to constrain these scaling relations for massive galaxy clusters ($M_{500}geq 3 times10^{14}$ $M_odot$) to the highest redshifts where these clusters exist without concern for X-ray selection biases. We find that the mass trends are steeper than self-similarity in all cases, and with $geq 2.5{sigma}$ significance in the case of $L_X$ and $M_{ICM}$. The redshift trends are consistent with the self-similar expectation, but the uncertainties remain large. Core-included scaling relations tend to have steeper mass trends for $L_X$. There is no convincing evidence for a redshift-dependent mass trend in any observable. The constraints on the amplitudes of the fitted scaling relations are currently limited by the systematic uncertainties on the SZE-based halo masses, however the redshift and mass trends are limited by the X-ray sample size and the measurement uncertainties of the X-ray observables.
We present the largest sample of spectroscopically confirmed X-ray luminous high-redshift galaxy clusters to date comprising 22 systems in the range 0.9<z<sim1.6 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially sel ected as extended X-ray sources over 76.1 deg^2 of non-contiguous deep archival XMM-Newton coverage. We test and calibrate the most promising two-band redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least zsim1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z>sim0.9. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z=0.916 and XDCP J0027.2+1714 at z=0.959, and investigate the Xray properties of SpARCS J003550-431224 at z=1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide X-ray properties and luminosity-based total mass estimates for the full sample, which has a median system mass of M200simeq2times10^14Modot. In contrast to local clusters, the z>0.9 systems do mostly not harbor central dominant galaxies coincident with the X-ray centroid position, but rather exhibit significant BCG offsets from the X-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of sim0.3mag. We estimate a fraction of cluster-associated NVSS 1.4GHz radio sources of about 30%, preferentially located within 1 from the X-ray center. The galaxy populations in z>sim1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs for a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions.
466 - Joana S. Santos 2011
Using the deepest (370 ksec) Chandra observation of a high-redshift galaxy cluster, we perform a detailed characterization of the intra-cluster medium (ICM) of WARPJ1415.1+3612 at z=1.03. We also explore the connection between the ICM core properties and the radio/optical properties of the brightest cluster galaxy (BCG). We perform a spatially resolved analysis of the ICM to obtain temperature, metallicity and surface brightness profiles. Using the deprojected temperature and density profiles we accurately derive the cluster mass at different overdensities. In addition to the X-ray data, we use archival radio VLA imaging and optical GMOS spectroscopy of the central galaxy to investigate the feedback between the central galaxy and the ICM. The X-ray spectral analysis shows a significant temperature drop towards the cluster center, with a projected value of Tc = 4.6 pm 0.4 keV, and a remarkably high central iron abundance peak, Zc= 3.6 Zsun. The central cooling time is shorter than 0.1 Gyr and the entropy is equal to 9.9 keV cm2. We detect a strong [OII] emission line in the optical spectra of the BCG with an equivalent width of -25 AA, for which we derive a star formation rate within the range 2 - 8 Msun/yr. The VLA data reveals a central radio source coincident with the BCG and a faint one-sided jet-like feature with an extent of 80 kpc. The analysis presented shows that WARPJ1415 has a well developed cool core with ICM properties similar to those found in the local Universe. Its properties and the clear sign of feedback activity found in the central galaxy in the optical and radio bands, show that feedback processes are already established at z~1. In addition, the presence of a strong metallicity peak shows that the central regions have been promptly enriched by star formation processes in the central galaxy already at z > 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا