ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport of Ionizing Radiation in Terrestrial-like Exoplanet Atmospheres

78   0   0.0 ( 0 )
 نشر من قبل David Smith
 تاريخ النشر 2003
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) The propagation of ionizing radiation through model atmospheres of terrestrial-like exoplanets is studied for a large range of column densities and incident photon energies using a Monte Carlo code we have developed to treat Compton scattering and photoabsorption. Incident spectra from parent star flares, supernovae, and gamma-ray bursts are modeled and compared to energetic particles in importance. We find that terrestrial-like exoplanets with atmospheres thinner than about 100 g cm^-2 transmit and reprocess a significant fraction of incident gamma-rays, producing a characteristic, flat surficial spectrum. Thick atmospheres (>~ 100 g cm^-2) efficiently block even gamma-rays, but nearly all incident energy is redistributed into diffuse UV and visible aurora-like emission, increasing the effective atmospheric transmission by many orders of magnitude. Depending on the presence of molecular UV absorbers and atmospheric thickness, up to 10% of the incident energy can reach the surface as UV reemission. For the Earth, between 2 x 10^-3 and 4 x 10^-2 of the incident flux reaches the ground in the biologically effective 200--320 nm range, depending on O_2/O_3 shielding. Finally, we suggest that transient atmospheric ionization layers can be frequently created at low altitudes. We conclude that these events can produce frequent fluctuations in atmospheric ionization levels and surficial UV fluxes on terrestrial-like planets.


قيم البحث

اقرأ أيضاً

Terrestrial exoplanets likely form initial atmospheres through outgassing during and after accretion, although there is currently no first-principles understanding of how to connect a planets bulk composition to its early atmospheric properties. Impo rtant insights into this connection can be gained by assaying meteorites, representative samples of planetary building blocks. We perform laboratory outgassing experiments that use a mass spectrometer to measure the abundances of volatiles released when meteorite samples are heated to 1200 $^{circ}$C. We find that outgassing from three carbonaceous chondrite samples consistently produce H$_2$O-rich (averaged ~66 %) atmospheres but with significant amounts of CO (~18 %) and CO$_2$ (~15 %) as well as smaller quantities of H$_2$ and H$_2$S (up to 1 %). These results provide experimental constraints on the initial chemical composition in theoretical models of terrestrial planet atmospheres, supplying abundances for principal gas species as a function of temperature.
The macroturbulent atmospheric circulation of Earth-like planets mediates their equator-to-pole heat transport. For fast-rotating terrestrial planets, baroclinic instabilities in the mid-latitudes lead to turbulent eddies that act to transport heat p oleward. In this work, we derive a scaling theory for the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanet atmospheres. This theory is built on the work of Jansen & Ferrari (2013), and determines how unstable the atmosphere is to baroclinic instability (the baroclinic criticality) through a balance between the baroclinic eddy heat flux and radiative heating/cooling. We compare our scaling theory to General Circulation Model (GCM) simulations and find that the theoretical predictions for equator-to-pole temperature contrast and bulk lapse rate broadly agree with GCM experiments with varying rotation rate and surface pressure throughout the baroclincally unstable regime. Our theoretical results show that baroclinic instabilities are a strong control of heat transport in the atmospheres of Earth-like exoplanets, and our scalings can be used to estimate the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanets. These scalings can be tested by spectroscopic retrievals and full-phase light curves of terrestrial exoplanets with future space telescopes.
Observations of exoplanet atmospheres have shown that aerosols, like in the Solar System, are common across a variety of temperatures and planet types. The formation and distribution of these aerosols are inextricably intertwined with the composition and thermal structure of the atmosphere. At the same time, these aerosols also interfere with our probes of atmospheric composition and thermal structure, and thus a better understanding of aerosols lead to a better understanding of exoplanet atmospheres as a whole. Here we review the current state of knowledge of exoplanet aerosols as determined from observations, modeling, and laboratory experiments. Measurements of the transmission spectra, dayside emission, and phase curves of transiting exoplanets, as well as the emission spectrum and light curves of directly imaged exoplanets and brown dwarfs have shown that aerosols are distributed inhomogeneously in exoplanet atmospheres, with aerosol distributions varying significantly with planet equilibrium temperature and gravity. Parameterized and microphysical models predict that these aerosols are likely composed of oxidized minerals like silicates for the hottest exoplanets, while at lower temperatures the dominant aerosols may be composed of alkali salts and sulfides. Particles originating from photochemical processes are also likely at low temperatures, though their formation process is highly complex, as revealed by laboratory work. In the years to come, new ground- and space-based observatories will have the capability to assess the composition of exoplanet aerosols, while new modeling and laboratory efforts will improve upon our picture of aerosol formation and dynamics.
Understanding of clouds is instrumental in interpreting current and future spectroscopic observations of exoplanets. Modelling clouds consistently is complex, since it involves many facets of chemistry, nucleation theory, condensation physics, coagul ation, and particle transport. We develop a simple physical model for cloud formation and transport, efficient and versatile enough that it can be used in modular fashion for parameter optimization searches of exoplanet atmosphere spectra. The transport equations are formulated in 1D, accounting for sedimentation and diffusion. The grain size is obtained through a moment method. For simplicity, only one cloud species is considered and the nucleation rate is parametrized. From the resulting physical profiles we simulate transmission spectra covering the visual to mid-IR wavelength range. We apply our models towards KCl clouds in the atmosphere of GJ1214 b and towards MgSiO3 clouds of a canonical hot-Jupiter. We find that larger cloud diffusivity $K_{zz}$ increases the thickness of the cloud, pushing the $tau=1$ surface to a lower pressure layer higher in the atmosphere. A larger nucleation rate also increases the cloud thickness while it suppresses the grain size. Coagulation is most important at high nuclei injection rates ($dotSigma_n$) and low $K_{zz}$. We find that the investigated combinations of $K_{zz}$ and $dotSigma_n$ greatly affect the transmission spectra in terms of the slope at near-IR wavelength (a proxy for grain size), the molecular features seen at ~1micr (which disappear for thick clouds, high in the atmosphere), and the 10micr silicate feature, which becomes prominent for small grains high in the atmosphere. The result of our hybrid approach -- aimed to provide a good balance between physical consistency and computational efficiency -- is ideal towards interpreting (future) spectroscopic observations of exoplanets.
We show that by changing a single non-dimensional number, the thermal Rossby number, global atmospheric simulations with only axisymmetric forcing pass from an Earth-like atmosphere to a superrotating atmosphere that more resembles the atmospheres of Venus or Titan. The transition to superrotation occurs under conditions in which equatorward-propagating Rossby waves generated by baroclinic instability at intermediate and high latitudes are suppressed, which will occur when the deformation radius exceeds the planetary radius. At large thermal Rossby numbers following an initial, nearly axisymmetric phase, a global baroclinic wave of zonal wavenumber one generated by mixed barotropic-baroclinic instability dominates the eddy flux of zonal momentum. The global wave converges eastward zonal momentum to the equator and deposits westward momentum at intermediate latitudes during spinup and before superrotation emerges, and the baroclinic instability ceases once superrotation is established. A global barotropic mode of zonal wavenumber one generated by a mix of high- and low-latitude barotropic instability is responsible for maintaining superrotation in the statistically steady state. At intermediate thermal Rossby numbers, momentum flux by the global baroclinic mode is subdominant relative to smaller baroclinic modes, and thus strong superrotation does not develop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا