ﻻ يوجد ملخص باللغة العربية
The black hole X-ray binary V4641 Sgr experienced an outburst in 2002 May which was detected at X-ray, optical, and radio wavelengths. The outburst lasted for only 6 days, but the object remained active for the next several months. Here we report on the detailed properties of light curves during the outburst and the post-outburst active phase. We reveal that rapid optical variations of ~100 s became more prominent when a thermal flare weakened and the optical spectrum flattened in the Ic, Rc, and V-band region. In conjunction with the flat spectrum in the radio range, this strongly indicates that the origin of rapid variations is not thermal emission, but synchrotron emission. Just after the outburst, we detected repeated flares at optical and X-ray wavelengths. The optical and X-ray light curves exhibited a strong correlation, with the X-rays, lagging by about 7 min. The X-ray lag can be understood in terms of a hot region propagating into the inner region of the accretion flow. The short X-ray lag, however, requires modifications of this simple scenario to account for the short propagation time. We also detected rapid optical variations with surprisingly high amplitude 50 days after the outburst, which we call optical flashes. During the most prominent optical flash, the object brightened by 1.2 mag only within 30 s. The released energy indicates that the emission source should be at the innermost region of the accretion flow.
We present spectroscopic observations of the black-hole binary V4641 Sagittarii, obtained between 4th July 2004 and 28th March 2005, which cover the minor outburst of the star in early July 2004 and quiescence variations on 19 nights scattered over s
We present an X-ray spectral and timing analysis of 4U 1543-47 during its 2002 outburst based on 49 pointed observations obtained using the Rossi X-ray Timing Explorer (RXTE). The outburst reached a peak intensity of 4.2 Crab in the 2-12 keV band and
Be X-ray binaries are among the best known transient high-energy sources. Their outbursts are commonly classified into a simple scheme of normal and giant outbursts, but a closer look shows that actual outbursts do not always follow this simple schem
We simulate the observation of a bright Nova Musca-like X-ray nova during outburst with INTEGRAL, the next ESA gamma-ray space observatory. We will show how performances of the INTEGRAL instruments allow deep study of X-ray Novae and will evaluate th
V5116 Sgr (Nova Sgr 2005 No. 2), discovered on 2005 July 4, was observed with XMM-Newton in March 2007, 20 months after the optical outburst. The X-ray spectrum shows that the nova had evolved to a pure supersoft X-ray source, with no significant emi