ﻻ يوجد ملخص باللغة العربية
We report the high S/N observation on October 3, 2002 with XMM-Newton of the brightest X-ray flare detected so far from SgrA* with a duration shorter than one hour (~ 2.7 ks). The light curve is almost symmetrical with respect to the peak flare, and no significant difference between the soft and hard X-ray range is detected. The overall flare spectrum is well represented by an absorbed power-law with a soft photon spectral index of Gamma=2.5+/-0.3, and a peak 2-10 keV luminosity of 3.6 (+0.3-0.4) x 10^35 erg/s, i.e. a factor 160 higher than the Sgr A* quiescent value. No significant spectral change during the flare is observed. This X-ray flare is very different from other bright flares reported so far: it is much brighter and softer. The present accurate determination of the flare characteristics challenge the current interpretation of the physical processes occuring inside the very close environment of SgrA* by bringing very strong constraints for the theoretical flare models.
[truncated] In Spring 2007, we observed SgrA* with XMM with a total exposure of ~230ks. We have performed timing and spectral analysis of the new X-ray flares detected during this campaign. To study the range of flare spectral properties, in a consis
Sgr A*, the compact radio source, believed to be the counterpart of the massive black hole at the galactic nucleus, was observed to undergo rapid and intense flaring activity in X-rays with Chandra in October 2000. We report here the detection with X
We report on new modeling results based on the mm- to X-ray emission of the SgrA* counterpart associated with the massive black hole at the Galactic Center. Our modeling is based on simultaneous observations carried out on 07 July, 2004, using the ES
We report on the first simultaneous near-infrared/X-ray detection of the Sgr A* counterpart which is associated with the massive black hole at the center of the Milky Way. The observations have been carried out using the NACO adaptive optics (AO) ins
We report on the analysis of a deep (100 ks) observation of the starburst galaxy M82 with the EPIC and RGS instruments on board the X-ray telescope XMM-Newton. The broad-band (0.5-10 keV) emission is due to at least three spectral components: i) cont