ﻻ يوجد ملخص باللغة العربية
Sgr A*, the compact radio source, believed to be the counterpart of the massive black hole at the galactic nucleus, was observed to undergo rapid and intense flaring activity in X-rays with Chandra in October 2000. We report here the detection with XMM-Newton EPIC cameras of the early phase of a similar X-ray flare from this source, which occurred on September 4, 2001. The source 2-10 keV luminosity increased by a factor about 20 to reach a level of 4 10^{34} erg s^{-1} in a time interval of about 900 s, just before the end of the observation. The data indicate that the source spectrum was hard during the flare. This XMM-Newton observation confirms the results obtained by Chandra and suggests that, in Sgr A*, rapid and intense X-ray flaring is not a rare event. This can constrain the emission mechanism models proposed for this source, and also implies that the crucial multiwavelength observation programs planned to explore the behaviour of the radio/sub-mm and hard X-ray/gamma-ray emissions during the X-ray flares, have a good chance of success.
We report the high S/N observation on October 3, 2002 with XMM-Newton of the brightest X-ray flare detected so far from SgrA* with a duration shorter than one hour (~ 2.7 ks). The light curve is almost symmetrical with respect to the peak flare, and
We report the results of XMM-Newton observations of Sgr A*, the radiative counterpart of the massive black hole at the nucleus of our Galaxy, performed in the frame of the guaranteed time survey program of the Galactic Center region. The discovery of
We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic Plane Survey of Hands et al. (2004). In addition to photomet
Cal 87 was observed with XMM-Newton in April of 2003. The source shows a rich emission line spectrum, where lines can be identified if they are red-shifted by 700-1200 km/s. These lines seem to have been emitted in a wind from the system. The eclipse
We present a work in progress aimed at measuring the spectrum of the Cosmic X-ray Background (CXB) with the EPIC detectors onboard XMM-Newton. Our study includes a detailed characterization of the EPIC non X-ray background, which is crucial in making