ﻻ يوجد ملخص باللغة العربية
A gamma-ray halo in a nearby starburst galaxy NGC 253 was found by the CANGAROO-II Imaging Atmospheric Cherenkov Telescope (IACT). By fitting the energy spectrum with expected curves from Cold Dark Matter (CDM) annihilations, we constrain the CDM-annihilation rate in the halo of NGC 253. Upper limits for the CDM density were obtained in the wide mass range between 0.5 and 50 TeV. Although these limits are higher than the expected values, it is complementary important to the other experimental techniques, especially considering the energy coverage. We also investigate the next astronomical targets to improve these limits.
New bounds on decaying Dark Matter are derived from the gamma-ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent c
We have obtained Magellan/IMACS and HST/ACS imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover
High-resolution LCDM cosmological N-body simulations are used to study the properties of galaxy-size dark halos in different environments (cluster, void, and field). Halos in clusters and their surroundings have a median spin parameter ~1.3 times low
The NGC 1052 group, and in particular the discovery of two ultra diffuse galaxies with very low internal velocity dispersions, has been the subject of much attention recently. Here we present radial velocities for a sample of 77 globular clusters ass
If the dark matter is unstable, the decay of these particles throughout the universe and in the halo of the Milky Way could contribute significantly to the isotropic gamma-ray background (IGRB) as measured by Fermi. In this article, we calculate the