ترغب بنشر مسار تعليمي؟ اضغط هنا

High energy gamma-ray constraints on decaying Dark Matter

153   0   0.0 ( 0 )
 نشر من قبل Moulin Emmanuel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New bounds on decaying Dark Matter are derived from the gamma-ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range of dark matter masses and a variety of decay modes, excluding half-lives up to about 10^26 to few 10^27 seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e+/- spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices are adopted. We also discuss future prospects for CTA bounds from Fornax which, contrary to the present H.E.S.S. constraints of (ii), may allow for an interesting improvement and may become better than those from the current or future extragalactic Fermi data.

قيم البحث

اقرأ أيضاً

If the dark matter is unstable, the decay of these particles throughout the universe and in the halo of the Milky Way could contribute significantly to the isotropic gamma-ray background (IGRB) as measured by Fermi. In this article, we calculate the high-latitude gamma-ray flux resulting from dark matter decay for a wide range of channels and masses, including all contributions from inverse Compton scattering and accounting for the production and full evolution of cosmological electromagnetic cascades. We also make use of recent multi-wavelength analyses that constrain the astrophysical contributions to the IGRB, enabling us to more strongly restrict the presence any component arising from decaying dark matter. Over a wide range of decay channels and masses (from GeV to EeV and above), we derive stringent lower limits on the dark matters lifetime, generally in the range of $tau sim (1-5)times 10^{28}$ s.
Utilizing the Fermi measurement of the gamma-ray spectrum toward the Galactic Center, we derive some of the strongest constraints to date on the dark matter (DM) lifetime in the mass range from hundreds of MeV to above an EeV. Our profile-likelihood based analysis relies on 413 weeks of Fermi Pass 8 data from 200 MeV to 2 TeV, along with up-to-date models for diffuse gamma-ray emission within the Milky Way. We model Galactic and extragalactic DM decay and include contributions to the DM-induced gamma-ray flux resulting from both primary emission and inverse-Compton scattering of primary electrons and positrons. For the extragalactic flux, we also calculate the spectrum associated with cascades of high-energy gamma-rays scattering off of the cosmic background radiation. We argue that a decaying DM interpretation for the 10 TeV-1 PeV neutrino flux observed by IceCube is disfavored by our constraints. Our results also challenge a decaying DM explanation of the AMS-02 positron flux. We interpret the results in terms of individual final states and in the context of simplified scenarios such as a hidden-sector glueball model.
Among the several strategies for indirect searches of dark matter, one very promising one is to look for the gamma-rays from decaying dark matter. Here we use the most up-to-date upper bounds on the gamma-ray flux from $10^5$ to $10^{11}$ GeV, obtain ed from CASA-MIA, KASCADE, KASCADE-Grande, Pierre Auger Observatory, and Telescope Array. We obtain global limits on dark matter lifetime in the range of masses $m_mathrm{DM}=[10^7-10^{15}]~mathrm{GeV}$. We provide the bounds for a set of decay channels chosen as representatives. The constraints derived here are new and cover a region of the parameter space not yet explored. We compare our results with the projected constraints from future neutrino telescopes, in order to quantify the improvement that will be obtained by the complementary high-energy neutrino searches.
Dwarf spheroidal galaxies are dark matter dominated systems, and as such, ideal for indirect dark matter searches. If dark matter decays into high-energy photons in the dwarf galaxies, they will be a good target for current and future generations of X-ray and gamma-ray telescopes. By adopting the latest estimates of density profiles of dwarf galaxies in the Milky Way, we revise the estimates dark matter decay rates in dwarf galaxies; our results are more robust, but weaker than previous estimates. Applying these results, we study the detectability of dark matter decays with X-ray and very-high-energy gamma-ray telescopes, such as eROSITA, XRISM, Athena, HAWC, and CTA. Our projection shows that all of these X-ray telescopes will be able to critically assess the claim of the 7 keV sterile neutrino decays from stacked galaxy clusters and nearby galaxies. For TeV decaying dark matter, we can constrain its lifetime to be longer than $sim$10$^{27}$-10$^{28}$ s. We also make projections for future dwarf galaxies that would be newly discovered with the Vera Rubin Observatory Legacy Survey of Space and Time, which will further improve the expected sensitivity to dark matter decays both in the keV and PeV mass ranges.
The discovery of high-energy astrophysical neutrinos by IceCube has opened a new window to the Universe. However, the origin of these neutrinos is still a mystery, and some of them could be a result of dark matter interactions such as decay. Next gen eration gigaton water-Cherenkov neutrino telescope, KM3NeT, is expected to offer significantly improved energy resolution in the cascade channel, and advantageous viewing condition to the Galactic Center; both important for searches of dark matter decay signals. We study the sensitivity of KM3NeT on dark matter decays by performing a mock likelihood analysis for both cascade and track type events, taking into account both angular and energy information. We find that, combining both channels, KM3NeT is expected to produce world leading limits on dark matter decay lifetime in the PeV mass range, and could test some of the dark matter hints in the current IceCube data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا