ترغب بنشر مسار تعليمي؟ اضغط هنا

Circularly polarised radio emission from GRS 1915+105 and other X-ray binaries

105   0   0.0 ( 0 )
 نشر من قبل Rob Fender
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rob Fender




اسأل ChatGPT حول البحث

I report the detection of circular polarisation, associated with relativistic ejections, from the `microquasar GRS 1915+105. I further compare detections and limits of circular polarisation and circular-to-linear polarisation ratios in other X-ray binaries. Since in at least two cases the dominance of linear over circular polarisation or vice versa is a function of frequency, this seems to indicate that this is a strong function of depolarisation in the source. Furthermore, I note that circular polarisation has only been detected from sources whose jets lie close to the plane of the sky, whereas we have quite stringent limits on the circular polarisation of jets which lie close to the line of sight.



قيم البحث

اقرأ أيضاً

The Galactic black hole transient GRS1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multi-wavelength flares. Here we report the radio and X-ray properties of GRS1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (~3mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterised by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg.
92 - R. N. Ogley 2000
We present the first detections of the black hole X-ray binary GRS 1915+105 at sub-millimetre wavelengths. We clearly detect the source at 350 GHz on two epochs, with significant variability over the 24 hr between epochs. Quasi-simultaneous radio mon itoring indicates an approximately flat spectrum from 2 - 350 GHz, although there is marginal evidence for a minimum in the spectrum between 15 - 350 GHz. The flat spectrum and correlated variability imply that the sub-mm emission arises from the same synchrotron source as the radio emission. This source is likely to be a quasi-steady partially self-absorbed jet, in which case these sub-mm observations probe significantly closer to the base of the jet than do radio observations and may be used in future as a valuable diagnostic of the disc:jet connection in this source.
319 - M. P. Muno 2001
We combine a complete sample of 113 pointed observations taken with the Rossi X-ray Timing Explorer between 1996-1999, monitoring observations taken with the Ryle telescope and the Green Bank Interferometer, and selected observations with the Very La rge Array to study the radio and X-ray properties of GRS 1915+105 when its X-ray emission is hard and steady. We establish that radio emission always accompanies the hard-steady state of GRS 1915+105, but that the radio flux density at 15.2 GHz and the X-ray flux between 2-200 keV are not correlated. Therefore we study the X-ray spectral and timing properties of GRS 1915+105 using three approaches: first, by describing in detail the properties of three characteristic observations, then by displaying the time evolution of the timing properties during periods of both faint and bright radio emission, and lastly by plotting the timing properties as a function of the the radio flux density. We find that as the radio emission becomes brighter and more optically thick, 1) the frequency of a ubiquitous 0.5-10 Hz QPO decreases, 2) the Fourier phase lags between hard (11.5-60 keV) and soft (2-4.3 keV) in the frequency range of 0.01-10 Hz change sign from negative to positive, 3) the coherence between hard and soft photons at low frequencies decreases, and 4) the relative amount of low frequency power in hard photons compared to soft photons decreases. We discuss how these results reflect upon basic models from the literature describing the accretion flow around black holes and the possible connection between Comptonizing electrons and compact radio jets.
We examine stochastic variability in the dynamics of X-ray emission from the black hole system GRS 1915+105, a strongly variable microquasar commonly used for studying relativistic jets and the physics of black hole accretion. The analysis of sample observations for 13 different states in both soft (low) and hard (high) energy bands is performed by flicker-noise spectroscopy (FNS), a phenomenological time series analysis method operating on structure functions and power spectrum estimates. We find the values of FNS parameters, including the Hurst exponent, flicker-noise parameter, and characteristic time scales, for each observation based on multiple 2,500-second continuous data segments. We identify four modes of stochastic variability driven by dissipative processes that may be related to viscosity fluctuations in the accretion disk around the black hole: random (RN), power-law (1F), one-scale (1S), and two-scale (2S). The variability modes are generally the same in soft and hard energy bands of the same observation. We discuss the potential for future FNS studies of accreting black holes.
The space velocity of a stellar black hole encodes the history of its formation and evolution. Here we measure the 3-dimensional motion of the microquasar GRS 1915+105, using a decade of astrometry with the NRAO Very Long Baseline Array, together wit h the published radial velocity. The velocity in the Galactic Plane deviates from circular rotation by 53-80 +_ 8 km/s, where the range covers any specific distance from 6-12 kpc. Perpendicular to the plane, the velocity is only 10 +_ 4 km/s. The peculiar velocity is minimized at a distance 9-10 kpc, and is then nearly in the radial direction towards the Galactic Center. We discuss mechanisms for the origin of the peculiar velocity, and conclude that it is most likely a consequence of Galactic velocity diffusion on this old binary, rather than the result of a supernova kick during the formation of the 14 Mo black hole. Finally, a brief comparison is made with 4 other BH binaries whose kinematics are well determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا