ترغب بنشر مسار تعليمي؟ اضغط هنا

Odin observations of the Galactic centre in the 118-GHz band. Upper limit to the O2 abundance

244   0   0.0 ( 0 )
 نشر من قبل Aage Sandqvist
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aa. Sandqvist




اسأل ChatGPT حول البحث

The Odin satellite has been used to search for the 118.75-GHz line of molecular oxygen (O2)in the Galactic centre. Odin observations were performed towards the Sgr A* circumnuclear disk (CND), and the Sgr A +20 km/s and +50 km/s molecular clouds using the position-switching mode. Supplementary ground-based observations were carried out in the 2-mm band using the ARO Kitt Peak 12-m telescope to examine suspected SiC features. A strong emission line was found at 118.27 GHz, attributable to the J=13-12 HC3N line. Upper limits are presented for the 118.75-GHz O2 (1,1-1,0) ground transition line and for the 118.11-GHz 3Pi2, J=3-2 ground state SiC line at the Galactic centre. Upper limits are also presented for the 487-GHz O2 line in the Sgr A +50 km/s cloud and for the 157-GHz, J=4-3, SiC line in the Sgr A +20 and +50 km/s clouds, as well as the CND. The CH3OH line complex at 157.2 - 157.3 GHz has been detected in the +20 and +50 km/s clouds but not towards Sgr A*/CND. A 3-sigma upper limit for the fractional abundance ratio of [O2]/[H2] is found to be X(O2) < 1.2 x 10exp(-7) towards the Sgr A molecular belt region.



قيم البحث

اقرأ أيضاً

The Odin satellite has been used to detect emission and absorption in the 557-GHz H2O line in the Galactic Centre towards the Sgr A* Circumnuclear Disk (CND), and the Sgr A +20 km/s and +50 km/s molecular clouds. Strong broad H2O emission lines have been detected in all three objects. Narrow H2O absorption lines are present at all three positions and originate along the lines of sight in the 3-kpc Spiral Arm, the -30 km/s Spiral Arm and the Local Sgr Spiral Arm. Broad H2O absorption lines near -130 km/s are also observed, originating in the Expanding Molecular Ring. A new molecular feature (the ``High Positive Velocity Gas - HPVG) has been identified in the positive velocity range of ~ +120 to +220 km/s, seen definitely in absorption against the stronger dust continuum emission from the +20 km/s and +50 km/s clouds and possibly in emission towards the position of Sgr A* CND. The 548-GHz H2_18O isotope line towards the CND is not detected at the 0.02 K (rms) level.
We report new observations of molecular oxygen in absorption at z=0.685 in front of the radio source B0218+357. The lines at 56.3 and 118.7 GHz have been observed, redshifted to 33.4 and 70.5 GHz respectively, with the 12m at Kitt Peak, 43m at Green Bank telescopes, and the 45m Nobeyama radio telescope. Deriving the surface filling factor of the absorbing dark cloud with other lines detected at nearby frequencies, we deduce from the upper limits on the O2 lines a relative abundance of molecular oxygen with respect to carbon monoxyde of O2/CO $la$ 2 10$^{-3}$ at 1$sigma$, seven times lower than the previous limit. The consequences of this result are discussed.
We present the detection of molecular oxygen with Odin toward the dense molecular core rho Oph A, which is part of a region of active star formation. The observed spectral line is the (N,J = 1,1-1,0) ground state transition of molecular oxygen at 119 GHz (2.5 mm wavelength). The center of the line is at the LSR velocity of a number of optically thin lines from other species in the region and the O2 line also has a very similar, narrow, line width. Within the 10 arcmin beam, the integrated line intensity is 28 mK km/s, which corresponds to 5 sigma of the rms noise. A standard LTE analysis results in an O2 abundance of 5E(-8), with an uncertainty of at least a factor of two. We show that standard methods, however, do not apply in this case, as the coupling of the Odin beam to the source structure needs to be accounted for. Preliminary model results indicate O2 abundances to be higher by one order of magnitude than suggested by the standard case. This model predicts the 487 GHz line of O2 to be easily detectable by the future Herschel-HIFI facility, but to be out of reach for observations on a shorter time scale with the Odin space observatory.
We present results of 3 mm observations of SiO maser sources in the Galactic Centre (GC) from observations with the Australia Telescope Compact Array between $2010-2014$, along the transitions of the SiO molecule at $v = 1, J = 2-1$ at 86.243 GHz and $v = 2, J = 2-1$ at 85.640 GHz. We also present the results of the 3 mm observations with Atacama Large Millimeter/Submillimeter Array (ALMA). We detected 5 maser sources from the ATCA data, IRS 7, IRS 9, IRS 10EE, IRS 12N, and IRS 28; and 20 sources from the ALMA data including 4 new sources. These sources are predominantly late-type giants or emission line stars with strong circumstellar maser emission. We analyse these sources and calculate their proper motions. We also study the variability of the maser emission. IRS 7, IRS 12N and IRS 28 exhibit long period variability of the order of $1 - 2$ years, while other sources show steady increase or decrease in flux density and irregular variability over observation timescales. This behaviour is consistent with the previous observations.
The Infrared Space Observatory Long wavelength Spectrometerhas been used to map distribution of the emission from a sample of 22 atomic, molecular and ionised lines toward the Circumnuclear Disk at the Galactic Centre. The CND disc is clearly seen in the maps of molecular lines such as CO and OH, whilst the central region dominates in other atomic and ionised lines. The spectrum toward Sgr A star is best represented by the sum of a 58 K blackbody, superposed with 22 identifiable emission or absorption features, including four lines each attributed to CO and OH, two broad features that may be indicative of a complex of solid state features, two H2O lines, and the rest being various atomic or ionised atomic lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا