ﻻ يوجد ملخص باللغة العربية
The identification of non-Gaussian signatures in cosmic microwave background (CMB) temperature maps is one of the main cosmological challenges today. We propose and investigate altenative methods to analyse CMB maps. Using the technique of constrained randomisation we construct surrogate maps which mimic both the power spectrum and the amplitude distribution of simulated CMB maps containing non-Gaussian signals. Analysing the maps with weighted scaling indices and Minkowski functionals yield in both cases statistically significant identification of the primordial non-Gaussianities. We demonstrate that the method is very robust with respect to noise. We also show that Minkowski functionals are able to account for non-linearities at higher noise level when applied in combination with surrogates than when only applied to noise added CMB maps and phase randomis
We apply a new method to measure primordial non-Gaussianity, using the cross-correlation between galaxy surveys and the CMB lensing signal to measure galaxy bias on very large scales, where local-type primordial non-Gaussianity predicts a $k^2$ diver
The extensive search for deviations from Gaussianity in cosmic microwave background radiation (CMB) data is very important due to the information about the very early moments of the universe encoded there. Recent analyses from Planck CMB data do not
We forecast combined future constraints from the cosmic microwave background and large-scale structure on the models of primordial non-Gaussianity. We study the generalized local model of non-Gaussianity, where the parameter f_NL is promoted to a fun
A detection or nondetection of primordial non-Gaussianity by using the cosmic microwave background radiation (CMB) offers a way of discriminating inflationary scenarios and testing alternative models of the early universe. This has motivated the cons
We present an upgraded combined estimator, based on Minkowski Functionals and Neural Networks, with excellent performance in detecting primordial non-Gaussianity in simulated maps that also contain a weighted mixture of Galactic contaminations, besid