ﻻ يوجد ملخص باللغة العربية
We forecast combined future constraints from the cosmic microwave background and large-scale structure on the models of primordial non-Gaussianity. We study the generalized local model of non-Gaussianity, where the parameter f_NL is promoted to a function of scale, and present the principal component analysis applicable to an arbitrary form of f_NL(k). We emphasize the complementarity between the CMB and LSS by using Planck, DES and BigBOSS surveys as examples, forecast constraints on the power-law f_NL(k) model, and introduce the figure of merit for measurements of scale-dependent non-Gaussianity.
(ABRIDGED)The rise of cosmic structure depends upon the statistical distribution of initial density fluctuations generated by inflation. While the simplest models predict an almost perfectly Gaussian distribution, more-general models predict a level
We apply a new method to measure primordial non-Gaussianity, using the cross-correlation between galaxy surveys and the CMB lensing signal to measure galaxy bias on very large scales, where local-type primordial non-Gaussianity predicts a $k^2$ diver
We generalize the local model of primordial non-Gaussianity by promoting the parameter fNL to a general scale-dependent function fNL(k). We calculate the resulting bispectrum and the effect on the bias of dark matter halos, and thus the extent to whi
We develop an analysis pipeline for characterizing the topology of large scale structure and extracting cosmological constraints based on persistent homology. Persistent homology is a technique from topological data analysis that quantifies the multi
We study the constraining power on primordial non-Gaussianity of future surveys of the large-scale structure of the Universe for both near-term surveys (such as the Dark Energy Survey - DES) as well as longer term projects such as Euclid and WFIRST.