ﻻ يوجد ملخص باللغة العربية
We present UBVRI photometry of the open cluster NGC 2422 (age $sim 10^8$ yr) down to a limiting magnitude $Vsimeq19$. These data are used to derive the Luminosity and Mass Functions and to study the cluster spatial distribution. By considering the color-magnitude diagram data and adopting a representative cluster main sequence, we obtained a list of candidate cluster members based on a photometric criterion. Using a reference field region and an iterative procedure, a correction for contaminating field stars has been derived in order to obtain the Luminosity and the Mass Functions in the $M=0.4-3.5 M_odot$ range. By fitting the spatial distribution, we infer that a non-negligible number of cluster stars lies outside our investigated region. We have estimated a correction to the Mass Function of the cluster in order to take into account the missing cluster stars. The Present Day Mass Function of gc2422 can be represented by a power-law of index $alpha = 3.07 pm0.08 $ (rms) -- the Salpeter Mass Function in this notation has index $alpha = 2.35$ -- in the mass range $ 0.9 leq M/M_odotleq 2.5 $. The index $alpha$ and the total mass of the cluster are very similar to those of the Pleiades.
(... abridged) The observed luminosity function can be constructed in a range of absolute integrated magnitudes $I_{M_V}= [-10, -0.5]$ mag, i.e. about 5 magnitudes deeper than in the most nearby galaxies. It increases linearly from the brightest limi
AIMS. While observational evidence shows that most of the decline in a stars X-ray activity occurs between the age of the Hyades (~8 x 10^8 yrs) and that of the Sun, very little is known about the evolution of stellar activity between these ages. To
Galactic open clusters (OCs) that survive the early gas-expulsion phase are gradually destroyed over time by the action of disruptive dynamical processes. Their final evolutionary stages are characterized by a poorly populated concentration of stars
We present {it Hubble Space Telescope} {it V,I} photometry of the central region of the LMC cluster NGC 1866, reaching magnitudes as faint as V=27 mag. We find evidence that the cluster luminosity function shows a strong dependence on the distance fr
NGC 6611 is the massive young cluster (2-3 Myr) that ionises the Eagle Nebula. We present very deep photometric observations of the central region of NGC 6611 obtained with the Hubble Space Telescope and the following filters: ACS/WFC F775W and F850L