ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of Galactic open cluster remnants: the case of NGC 7193

77   0   0.0 ( 0 )
 نشر من قبل Mateus Souza Angelo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galactic open clusters (OCs) that survive the early gas-expulsion phase are gradually destroyed over time by the action of disruptive dynamical processes. Their final evolutionary stages are characterized by a poorly populated concentration of stars called open cluster remnant (OCR). This study is devoted to assess the real physical nature of the OCR candidate NGC 7193. GMOS/Gemini spectroscopy of 53 stars in the inner target region were obtained to derive radial velocities and atmospheric parameters. We also employed photometric and proper motion data. The analysis method consists of the following steps: (i) analysis of the statistical resemblance between the cluster and a set of field samples with respect to the sequences defined in colour-magnitude diagrams (CMDs); (ii) a 5-dimensional iteractive exclusion routine was employed to identify outliers from kinematical and positional data; (iii) isochrone fitting to the $K_{s}times(J-K_{s})$ CMD of the remaining stars and the dispersion of spectral types along empirical sequences in the $(J-H)times(H-K_{s})$ diagram was checked. A group of stars was identified for which the mean heliocentric distance is compatible with that obtained via isochrone fitting and whose metallicities are compatible with each other. Fifteen member stars observed spectroscopically were identified together with other 19 probable members. Our results indicate that NGC 7193 is a genuine OCR, of an once very populous OC, for which the following parameters were derived: $d=501,pm,46,$pc, $t=2.5,pm,1.2,$Gyr, $langle,[Fe/H],rangle=-0.17,pm,0.23$ and $E(B-V)=0.05,pm,0.05$. Its luminosity and mass functions show depletion of low mass stars, confirming the OCR dynamically evolved state.



قيم البحث

اقرأ أيضاً

101 - G. Banyard , H. Sana , L. Mahy 2021
It is well known that massive O-stars are frequently (if not always) found in binary or higher-order multiple systems, but this fact has been less robustly investigated for the lower mass range of the massive stars, represented by the B-type stars. O btaining the binary fraction and orbital parameter distributions of B-type stars is crucial to understand the impact of multiplicity on the archetypal progenitor of core-collapse supernovae as well as to properly investigate formation channels for gravitational wave progenitors. This work aims to characterise the multiplicity of the B-star population of the young open cluster NGC 6231 through multi-epoch optical spectroscopy of 80 B-type stars. We analyse 31 FLAMES/GIRAFFE observations of 80 B-type stars, monitoring their radial velocities (RVs) and performing a least-squares spectral analysis (Lomb-Scargle) to search for periodicity in those stars with statistically significant variability in their RVs. We constrain an observed spectroscopic binary fraction of $33pm5$% for the B-type stars of NGC 6231, with a first order bias-correction giving a true spectroscopic binary fraction of $52pm8$%. Out of 27 B-type binary candidates, we obtained orbital solutions for 20 systems: 15 single-lined (SB1) and 5 double-lined spectroscopic binaries (SB2s). We present these orbital solutions and the orbital parameter distributions associated with them. Our results indicate that Galactic B-type stars are less frequently found in binary systems than their more massive O-type counterparts, but their orbital properties generally resemble those of B- and O-type stars in both the Galaxy and Large Magellanic Cloud.
140 - Shane Hills 2015
This paper provides a detailed comparison of the differences in parameters derived for a star cluster from its color-magnitude diagrams depending on the filters and models used. We examine the consistency and reliability of fitting three widely-used stellar evolution models to fifteen combinations of optical and near-IR photometry for the old open cluster NGC 188. The optical filter response curves match those of the theoretical systems and are thus not the source of fit inconsistencies. NGC 188 is ideally suited to the present study thanks to a wide variety of high-quality photometry and available proper motions and radial velocities which enable us to remove non-cluster members and many binaries. Our Bayesian fitting technique yields inferred values of age, metallicity, distance modulus, and absorption as a function of the photometric band combinations and stellar models. We show that the historically-favored three band combinations of UBV and VRI can be meaningfully inconsistent with each other and with longer baseline datasets such as UBVRIJHKs. Differences among model sets can also be substantial. For instance, fitting Yi et al. (2001) and Dotter et al. (2008) models to UBVRIJHKs photometry for NGC 188 yields the following cluster parameters: age={5.78+ 0.03, 6.45+-0.04} Gyr, [Fe/H]={+0.125+-0.003, -0.077+-0.003} dex, m-M={11.441+-0.007, 11.525+-0.005} mag, and Av={0.162+-0.003, 0.236+-0.003} mag, respectively. Within the formal fitting errors, these two fits are substantially and statistically different. Such differences amongst fits using different filters and models are a cautionary tale regarding our current ability to fit star cluster color-magnitude diagrams. Additional modeling of this kind, with more models and star clusters, and future GAIA parallaxes are critical for isolating and quantifying the most relevant uncertainties in stellar evolutionary models.
Precision uvbyCaHbeta photometry of the nearby old open cluster, NGC 752, is presented. The mosaic of CCD fields covers an area ~42 on a side with internal precision at the 0.005 to 0.010 mag level for the majority of stars down to V~15. The CCD phot ometry is tied to the standard system using an extensive set of published photoelectric observations adopted as secondary standards within the cluster. Multicolor indices are used to eliminate as nonmembers a large fraction of the low probability proper-motion members near the faint end of the main sequence, while identifying 24 potential dwarf members between V=15.0 and 16.5, eight of which have been noted before from Vilnius photometry. From 68 highly probable F dwarf members, we derive a reddening estimate of E(b-y)= 0.025 +/- 0.003 (E(B-V) = 0.034 +/- 0.004), where the error includes the internal photometric uncertainty and the systematic error arising from the choice of the standard (b-y), Hbeta relation. With reddening fixed, [Fe/H] is derived from the F dwarf members using both m_1 and hk, leading to [Fe/H] = -0.071 +/-0.014 (sem) and -0.017 +/- 0.008 (sem), respectively. Taking the internal precision and possible systematics in the standard relations into account, [Fe/H] for NGC 752 becomes -0.03 +/-0.02. With the reddening and metallicity defined, we use the Victoria-Regina isochrones on the Stromgren system and find an excellent match for (m-M) = 8.30 +/- 0.05 and an age of 1.45 +/- 0.05 Gyr at the appropriate metallicity.
In this paper, we present our results for the photometric and kinematical studies of old open cluster NGC 188. We determined various astrophysical parameters like limited radius, core and tidal radii, distance, luminosity and mass functions, total ma ss, relaxation time etc. for the cluster using 2MASS catalog. We obtained the clusters distance from the Sun as 1721+/-41 pc and log (age)= 9.85+/-0.05 at Solar metallicity. The relaxation time of the cluster is smaller than the estimated cluster age which suggests that the cluster is dynamically relaxed. Our results agree with the values mentioned in the literature. We also determined the clusters apex coordinates as (281.88 deg, -44.76 deg) using AD-diagram method. Other kinematical parameters like space velocity components, cluster center and elements of Solar motion etc. have also been computed.
In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel $B$, $V$, and $I_c$ filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, as done in other papers of this series. Additional spectroscopic observations with FIES@NOT of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]$=-0.06$ dex, age between 0.8 and 1 Gyr, reddening $E(B-V)$ in the range 0.14 and 0.19 mag, and distance modulus $(m-M)_0$ of about 11 mag. We also investigated the abundances of O, Na, Al, $alpha$, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC~2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا