ترغب بنشر مسار تعليمي؟ اضغط هنا

Burst-properties as a function of mass accretion rate in GX 3+1

34   0   0.0 ( 0 )
 نشر من قبل Peter R. den Hartog
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GX 3+1 is a low-mass X-ray binary that is persistently bright since its discovery in 1964. It was found to be an X-ray burster twenty years ago proving that the compact object in this system is a neutron star. The burst rate is so low that only 18 bursts were reported prior to 1996. The Wide Field Cameras on BeppoSAX have, through a dedicated monitoring program on the Galactic center region, increased the number of X-ray bursts from GX 3+1 by 61. Since GX 3+1 exhibits a slow (order of years) modulation in the persistent flux of about 50%, these observations opens up the unique possibility to study burst properties as a function of mass accretion rate for very low burst rates. This is the first time that bursts are detected from GX 3+1 in the high state. From the analysis we learn that all bursts are short with e-folding decay times smaller than 10 s. Therefore, all bursts are due to unstable helium burning. Furthermore, the burst rate drops sixfold in a fairly narrow range of 2-20 keV flux; we discuss possible origins for this.


قيم البحث

اقرأ أيضاً

INTEGRAL detected on August 31, 2004, an unusual thermonuclear X-ray burst from the low-mass X-ray binary GX 3+1. Its duration was 30 min, which is between the normal burst durations for this source (<~10 s) and the superburst observed in 1998 (sever al hours). We see emission up to 30 keV energy during the first few seconds of the burst where the bolometric peak luminosity approaches the Eddington limit. This peculiar burst is characterized by two distinct phases: an initial short spike of ~6 s consistent with being similar to a normal type I X-ray burst, followed by a remarkable extended decay of cooling emission. We discuss three alternative schemes to explain its twofold nature: 1) unstable burning of a hydrogen/helium layer involving an unusually large amount of hydrogen, 2) pure helium ignition at an unusually large depth (unlikely in the present case), and 3) limited carbon burning at an unusually shallow depth triggered by unstable helium ignition. Though none of these provide a satisfactory description of this uncommon event, the former one seems the most probable.
Black hole binary transients undergo dramatic evolution in their X-ray timing and spectral behaviour during outbursts. In recent years a paradigm has arisen in which soft X-ray states are associated with an inner disc radius at, or very close to, the innermost stable circular orbit (ISCO) around the black hole, while in hard X-ray states the inner edge of the disc is further from the black hole. Models of advective flows suggest that as the X-ray luminosity drops in hard states, the inner disc progressively recedes, from a few to hundreds gravitational radii. Recent observations which show broad iron line detections and estimates of the disc component strength suggest that a non-recessed disc could still be present in bright hard states. In this study we present a comprehensive analysis of the spectral components associated with the inner disc, utilising data from instruments with sensitive low-energy responses and including reanalyses of previously published results. A key component of the study is to fully estimate systematic uncertainties by e.g. investigating in detail the effect of having a hydrogen column density that is fixed or free to vary. We conclude that for L_x > 0.01 of the Eddington limit, spectral fits allow us to constrain the disc to be < 10R_g. There is, however, clear evidence that when L_x is between 10^-2-- 10^-3 Eddington, the disc does begin to recede. We include measurements of disc radii in two quiescent black hole binaries, and present the inferred evolution of accretion parameters in the entire range of bolometric luminosities 10^-8 -- 1 Eddington. We compare our results with theoretical models and note that the implied rate of disc recession with luminosity is consistent with recent empirical results on the X-ray timing behaviour of black holes of all masses.
Neutron stars in low mass X-ray binaries exhibit oscillations during thermonuclear bursts, attributed to asymmetric brightness patterns on the burning surfaces. All models that have been proposed to explain the origin of these asymmetries (spreading hotspots, surface waves, and cooling wakes) depend on the accretion rate. By analysis of archival RXTE data of six oscillation sources, we investigate the accretion rate dependence of the amplitude of burst oscillations. This more than doubles the size of the sample analysed previously by Muno et al. (2004), who found indications for a relationship between accretion rate and oscillation amplitudes. We find that burst oscillation signals can be detected at all observed accretion rates. Moreover, oscillations at low accretion rates are found to have relatively small amplitudes ($A_text{rms}leq0.10$) while oscillations detected in bursts observed at high accretion rates cover a broad spread in amplitudes ($0.05leq A_text{rms}leq0.20$). In this paper we present the results of our analysis and discuss these in the light of current burst oscillation models. Additionally, we investigate the bursts of two sources without previously detected oscillations. Despite that these sources have been observed at accretion rates where burst oscillations might be expected, we find their behaviour to be not anomalous compared to oscillation sources.
We extract all the XMM-Newton EPIC pn burst mode spectra of GX 339-4, together with simultaneous/contemporaneous RXTE data. These include three disc dominated and two soft intermediate spectra, and the combination of broad bandpass/moderate spectral resolution gives some of the best data on these bright soft states in black hole binaries. The disc dominated spectra span a factor three in luminosity, and all show that the disc emission is broader than the simplest multicolour disc model. This is consistent with the expected relativistic smearing and changing colour temperature correction produced by atomic features in the newest disc models. However, these models do not match the data at the 5 per cent level as the predicted atomic features are not present in the data, perhaps indicating that irradiation is important even when the high energy tail is weak. Whatever the reason, this means that the data have smaller errors than the best physical disc models, forcing use of more phenomenological models for the disc emission. We use these for the soft intermediate state data, where previous analysis using a simple disc continuum found an extremely broad residual, identified as the red wing of the iron line from reflection around a highly spinning black hole. However, the iron line energy is close to where the disc and tail have equal fluxes, so using a broader disc continuum changes the residual iron line profile dramatically. With a broader disc continuum model, the inferred line is formed outside of 30 ${rm{R_g}}$, so cannot constrain black hole spin. We caution that a robust determination of black hole spin from the iron line profile is very difficult where the disc makes a significant contribution at the iron line energy i.e. in most bright black hole states.
We present results obtained from a Suzaku observation of the accretion powered X-ray pulsar GX 1+4. Broad-band continuum spectrum of the pulsar was found to be better described by a simple model consisting of a blackbody component and an exponential cutoff power-law than the previously used compTT continuum model. Though the pulse profile had a sharp dip in soft X-rays ($<$10 keV), phase-resolved spectroscopy confirmed that the dimming was not due to increase in photoelectric absorption. Phase-sliced spectral analysis showed the presence of a significant spectral modulation beyond 10 keV except for the dip phase. A search for the presence of cyclotron resonance scattering feature in the Suzaku spectra yielded a negative result. Iron K-shell (K$_alpha$ and K$_beta$) emission lines from nearly neutral iron ions ($<$Fe III) were clearly detected in the source spectrum. A significant K$_alpha$ emission line from almost neutral Ni atoms was detected for the first time in this source. We estimated the iron abundance of $sim$80 % of the solar value and Ni/Fe abundance ratio of about two times of the solar value. We searched for a iron Ly$_alpha$ emission line and found a significant improvement in the spectral fitting by inclusion of this line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا