ترغب بنشر مسار تعليمي؟ اضغط هنا

The thin layer of Warm Ionized Gas: towards a 3-D reconstruction of the spatial distribution of HII regions

46   0   0.0 ( 0 )
 نشر من قبل Roberta Paladini
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HII regions are known to contribute to the so-called thin layer of the diffuse Warm Ionized Gas. In order to constrain this contribution, we reconstruct the 3-D distribution of the sources. A detailed spatial analysis of the largest up-to-date sample of HII regions is presented.

قيم البحث

اقرأ أيضاً

We present a new, detailed, analysis of the spatial distribution of Galactic HII regions, exploiting a far richer database than used in previous analyses. Galactocentric distances have been derived for 550 objects. Distances from the Sun could be una mbiguously derived from velocity data for 117 of them, lying either outside the solar circle (84) or on a line-of-sight tangential to their orbit (33). For 177 further sources, distance estimates are made possible by the use of auxiliary data. A highly significant correlation between luminosity and linear diameter was found and the corresponding least-square linear relationship in the log-log plane was used to resolve the distance ambiguity for an additional 256 sources. Within the solar circle the thickness of the distribution of HII regions around the Galactic plane was found to be comparable to that of OB stars (Bronfman et al. 2000). At larger galactocentric radii the shape of the distribution reflects that of the warp, and its thickness along the z axis increases with increasing distance from the Galactic centre. We also confirm, for a much larger sample, the previously reported positive gradient of electron temperature with galactocentric distance.
We present molecular line and 1.4 mm continuum observations towards five massive star forming regions at arcsecond resolution using the Submillimeter Array (SMA). We find that the warm molecular gas surrounding each HII region (as traced by SO_2 and OCS) appears to be undergoing bulk rotation. From the molecular line emission and thermal component of the continuum emission, we independently derived gas masses for each region which are consistent with each other. From the free-free component of the continuum emission we estimate the minimum stellar mass required to power the HII region and find that this mass, when added to the derived gas mass, is a significant fraction of the dynamical mass for that region.
We investigate the kinematic properties of Galactic HII regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array (ATCA) at 4-10 GHz and the Jansky Very Large Array (VLA) at 8-10 GHz. Our HII region sampl e consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position-velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m/s/arcsec. About 15% of the sources also have a RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic Plane. We craft HII region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, > 40 m/s/arcsec, velocity gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most HII region complexes are rotating and may have inherited angular momentum from their parent molecular clouds.
We present a comprehensive statistical analysis of star-forming objects located in the vicinities of 1 360 bubble structures throughout the Galactic Plane and their local environments. The compilation of ~70 000 star-forming sources, found in the pro ximity of the ionized (Hii) regions and detected in both Hi-GAL and GLIMPSE surveys, provided a broad overview of the different evolutionary stages of star-formation in bubbles, from prestellar objects to more evolved young stellar objects (YSOs). Surface density maps of star-forming objects clearly reveal an evolutionary trend where more evolved star-forming objects are found spatially located near the center, while younger star-forming objects are found at the edge of the bubbles. We derived dynamic ages for a subsample of 182 Hii regions for which kinematic distances and radio continuum flux measurements were available. We detect ~80% more star-forming sources per unit area in the direction of bubbles than in the surrounding fields. We estimate ~10% clump formation efficiency (CFE) of Hi-GAL clumps in bubbles, twice the CFE in fields not affected by feedback. We find higher CFE of protostellar clumps in younger bubbles, whose density of the bubble shells is higher. We argue that the formation rate from prestellar to protostellar phase is probably higher during the early stages of the bubble expansion. Evaluation of the fragmentation time inside the shell of bubbles advocates the preexistence of clumps in the medium before the bubble, as supported by numerical simulations. Approximately 23% of the Hi-GAL clumps are found located in the direction of a bubble, with 15% for prestellar clumps and 41% for protostellar clumps. We argue that the high fraction of protostellar clumps may be due to the acceleration of the star-formation process cause by the feedback of the (Hii) bubbles.
The Diffuse Ionized Gas (DIG) contributes to the nebular emission of galaxies, resulting in emission line flux ratios that can be significantly different from those produced by HII regions. Comparing the emission of [SII]6717,31 between pointed obser vations of HII regions in nearby galaxies and integrated spectra of more distant galaxies, it has been recently claimed that the DIG can also deeply affect the emission of bright, star-forming galaxies, and that a large correction must be applied to observed line ratios to recover the genuine contribution from HII regions. Here we show instead that the effect of DIG on the integrated spectra of star-forming galaxies is lower than assumed in previous work. Indeed, aperture effects on the spectroscopy of nearby HII regions are largely responsible for the observed difference: when spectra of local HII regions are extracted using large enough apertures while still avoiding the DIG, the observed line ratios are the same as in more distant galaxies. This result is highly relevant for the use of strong-line methods to measure metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا