ﻻ يوجد ملخص باللغة العربية
We investigate the kinematic properties of Galactic HII regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array (ATCA) at 4-10 GHz and the Jansky Very Large Array (VLA) at 8-10 GHz. Our HII region sample consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position-velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m/s/arcsec. About 15% of the sources also have a RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic Plane. We craft HII region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, > 40 m/s/arcsec, velocity gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most HII region complexes are rotating and may have inherited angular momentum from their parent molecular clouds.
Context. The derived physical parameters for young HII regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young HII regions such as hyper-compact HII(HCHII) and ultra-co
We have discovered a number of very small isolated HII regions 20-30 kpc from their nearest galaxy. The HII regions appear as tiny emission line dots (ELdots) in narrow band images obtained by the NOAO Survey for Ionization in Neutral Gas Galaxies (S
Hypercompact (HC) HII regions are, by nature, very young HII regions, associated with the earliest stages of massive star formation. They may represent the transition phase as an early B-type star grows into an O-type star. Unfortunately, so few HCHI
The Diffuse Ionized Gas (DIG) contributes to the nebular emission of galaxies, resulting in emission line flux ratios that can be significantly different from those produced by HII regions. Comparing the emission of [SII]6717,31 between pointed obser
Here we report the first spatially resolved spectroscopic study for the galaxy PHL293B using the high-resolution GTC/MEGARA IFU. PHL293B is a local, extremely metal-poor, high ionization galaxy. This makes PHL 293B an excellent analogue for galaxies