ترغب بنشر مسار تعليمي؟ اضغط هنا

Data analysis methods for XMM-Newton observations of extended sources. Application to bright massive clusters of galaxies at z=0.2

46   0   0.0 ( 0 )
 نشر من قبل Philippe B. Marty
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a review is given of methods useful for XMM-Newton EPIC data analysis of extended sources, along with some applications to a bright massive cluster of galaxies at z=0.2, Abell 209. This may constitute an introduction to that kind of advanced analysis, complementing cookbooks that can be found over the internet, the XMM-Newton EPIC calibration status document (Kirsch, 2002), and the data analysis workshops organised in VILSPA, which were only dedicated so far to point sources analysis. In addition, new spectro-imaging techniques are proposed, in order to measure for instance the intracluster medium mass and temperature profiles, or even maps.



قيم البحث

اقرأ أيضاً

We present measurements of the X-ray observables of the intra-cluster medium (ICM), including luminosity $L_X$, ICM mass $M_{ICM}$, emission-weighted mean temperature $T_X$, and integrated pressure $Y_X$, that are derived from XMM-Newton X-ray observ ations of a Sunyaev-Zeldovich Effect (SZE) selected sample of 59 galaxy clusters from the South Pole Telescope SPT-SZ survey that span the redshift range of $0.20 < z < 1.5$. We constrain the best-fit power law scaling relations between X-ray observables, redshift, and halo mass. The halo masses are estimated based on previously published SZE observable to mass scaling relations, calibrated using information that includes the halo mass function. Employing SZE-based masses in this sample enables us to constrain these scaling relations for massive galaxy clusters ($M_{500}geq 3 times10^{14}$ $M_odot$) to the highest redshifts where these clusters exist without concern for X-ray selection biases. We find that the mass trends are steeper than self-similarity in all cases, and with $geq 2.5{sigma}$ significance in the case of $L_X$ and $M_{ICM}$. The redshift trends are consistent with the self-similar expectation, but the uncertainties remain large. Core-included scaling relations tend to have steeper mass trends for $L_X$. There is no convincing evidence for a redshift-dependent mass trend in any observable. The constraints on the amplitudes of the fitted scaling relations are currently limited by the systematic uncertainties on the SZE-based halo masses, however the redshift and mass trends are limited by the X-ray sample size and the measurement uncertainties of the X-ray observables.
We describe two peculiar galaxies falling into the massive galaxy clusters Abell 1689 (z~0.18) and 2667 (z~0.23) respectively. Hubble Space Telescope images show extraordinary trails composed of bright blue knots (-16.5<M<-11.5 mag) and stellar str eams associated with each of these systems. Combining optical, near and mid-infrared and radio observations we prove that while both galaxies show similar extended trails of star-forming knots, their recent star formation histories are different. One (~L*) is experiencing a strong burst of star formation, appearing as a rare example of a luminous infrared cluster galaxy. In comparison, the other (~ 0.1 L*) has recently ceased its star formation activity. Our model suggests that the morphologies and star formation in these galaxies have been influenced by the combined action of tidal interaction (likely with the cluster potential) and of ram pressure with the intracluster medium. These results can be used to gain more insights to the origin of S0s, dwarf and ultra-compact dwarf (UCD) cluster galaxies.
67 - J. Nevalainen 2005
We use XMM-Newton blank-sky and closed-cover background data to explore the background subtraction methods for large extended sources filling the EPIC field of view, such as nearby galaxy clusters, for which local background estimation is difficult. We find that to keep the 0.8-7.0 keV band background modeling uncertainty tolerable, one has to use a much more restrictive filter than that commonly applied. In particular, because flares have highly variable spectra, not all of them are identified by filtering the E>10 keV light curve. We tried using the outer part of the EPIC FOV for monitoring the background in a softer band (1-5 keV). We find that one needs to discard the time periods when either the hard-band or the soft-band rate exceeds the nominal value by more than 20% in order to limit the 90% CL background uncertainty to between 5% at E=4-7 keV and 20% at E=0.8-1 keV, for both MOS and PN. This compares to a 10-30% respective PN uncertainty when only the hard-band light curve is used for filtering, and to a 15-45% PN uncertainty when applying the commonly used 2-3 sigma filtering method. We illustrate our method on a nearby cluster A1795. The above background uncertainties convert into the systematic temperature uncertainties between 1% at r=3-4 arcmin and 20--25% (~1 keV for A1795) at r=10-15 arcmin. For comparison, the commonly applied 2-3 sigma clipping of the hard-band light curve misses a significant amount of flares, rendering the temperatures beyond r=10 arcmin unconstrained. Thus, the background uncertainties do not prohibit the EPIC temperature profile analysis of low-brightness regions, like outer regions of galaxy clusters, provided a conservative flare filtering such as the double filtering method with 20% limits is used.
We present optical and X-ray data for a sample of serendipitous XMM-Newton sources that are selected to have 0.5-2 keV vs 2-4.5 keV X-ray hardness ratios which are harder than the X-ray background. The sources have 2-4.5 keV X-ray flux >= 10^-14 cgs, and in this paper we examine a subsample of 42 optically bright (r < 21) sources; this subsample is 100 per cent spectroscopically identified. All but one of the optical counterparts are extragalactic, and we argue that the single exception, a Galactic M star, is probably a coincidental association. The X-ray spectra are consistent with heavily absorbed power laws (21.8 < log NH < 23.4), and all of them appear to be absorbed AGN. The majority of the sources show only narrow emission lines in their optical spectra, implying that they are type-2 AGN. Only a small fraction of the sources (7/42) show broad optical emission lines, and all of these have NH < 10^23 cm^-2. This implies that ratios of X-ray absorption to optical/UV extinction equivalent to > 100 times the Galactic gas-to-dust ratio are rare in AGN absorbers (at most a few percent of the population), and may be restricted to broad absorption-line QSOs. Seven objects appear to have an additional soft X-ray component in addition to the heavily absorbed power law. We consider the implications of our results in the light of the AGN unified scheme. We find that the soft components in narrow-line objects are consistent with the unified scheme provided that > 4 per cent of broad-line AGN have ionised absorbers that attenuate their soft X-ray flux by >50 per cent. In at least one of the X-ray absorbed, broad-line AGN in our sample the X-ray spectrum requires an ionised absorber, consistent with this picture.
42 - L.R. Jones 2003
The X-ray properties of a sample of high redshift (z>0.6), massive clusters observed with XMM-Newton and Chandra are described, including two exceptional systems. One, at z=0.89, has an X-ray temperature of T=11.5 (+1.1, -0.9) keV (the highest temper ature of any cluster known at z>0.6), an estimated mass of (1.4+/-0.2)x10^15 solar masses and appears relaxed. The other, at z=0.83, has at least three sub-clumps, probably in the process of merging, and may also show signs of faint filamentary structure at large radii,observed in X-rays. In general there is a mix of X-ray morphologies, from those clusters which appear relaxed and containing little substructure to some highly non-virialized and probably merging systems. The X-ray gas metallicities and gas mass fractions of the relaxed systems are similar to those of low redshift clusters of the same temperature, suggesting that the gas was in place, and containing its metals, by z=0.8. The evolution of the mass-temperature relation may be consistent with no evolution or with the ``late formation assumption. The effect of point source contamination in the ROSAT survey from which these clusters were selected is estimated, and the implications for the ROSAT X-ray luminosity function discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا