ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM-SSC survey of hard-spectrum XMM-Newton sources 1: optically bright sources

120   0   0.0 ( 0 )
 نشر من قبل Mathew James Page
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical and X-ray data for a sample of serendipitous XMM-Newton sources that are selected to have 0.5-2 keV vs 2-4.5 keV X-ray hardness ratios which are harder than the X-ray background. The sources have 2-4.5 keV X-ray flux >= 10^-14 cgs, and in this paper we examine a subsample of 42 optically bright (r < 21) sources; this subsample is 100 per cent spectroscopically identified. All but one of the optical counterparts are extragalactic, and we argue that the single exception, a Galactic M star, is probably a coincidental association. The X-ray spectra are consistent with heavily absorbed power laws (21.8 < log NH < 23.4), and all of them appear to be absorbed AGN. The majority of the sources show only narrow emission lines in their optical spectra, implying that they are type-2 AGN. Only a small fraction of the sources (7/42) show broad optical emission lines, and all of these have NH < 10^23 cm^-2. This implies that ratios of X-ray absorption to optical/UV extinction equivalent to > 100 times the Galactic gas-to-dust ratio are rare in AGN absorbers (at most a few percent of the population), and may be restricted to broad absorption-line QSOs. Seven objects appear to have an additional soft X-ray component in addition to the heavily absorbed power law. We consider the implications of our results in the light of the AGN unified scheme. We find that the soft components in narrow-line objects are consistent with the unified scheme provided that > 4 per cent of broad-line AGN have ionised absorbers that attenuate their soft X-ray flux by >50 per cent. In at least one of the X-ray absorbed, broad-line AGN in our sample the X-ray spectrum requires an ionised absorber, consistent with this picture.



قيم البحث

اقرأ أيضاً

88 - A. Georgakakis 2003
In this paper we investigate the properties of low X-ray-to-optical flux ratio sources detected in a wide area (2.5deg^2) shallow (f(0.5-8keV)~10e-14cgs) XMM-Newton survey. We find a total of 26 sources (5% of the total X-ray selected population) wit h log f_X/f_{opt}<-0.9 to the above flux limit. Optical spectroscopy is available for 20 of these low X-ray-to-optical flux ratio objects. Most of them are found to be associated with Galactic stars (total of 8) and broad line AGNs (total of 8).We also find two sources with optical spectra showing absorption and/or narrow emission lines and X-ray/optical properties suggesting AGN activity. Another two sources are found to be associated with low redshift galaxies with narrow emission line optical spectra, X-ray luminosities L_X(0.5-8keV)~10e41cgs and logf_X/f_opt ~ -2 suggesting `normal star-forming galaxies. Despite the small number statistics the sky density of `normal X-ray selected star-forming galaxies at the flux limit of the present sample is low consistent with previous ROSAT HRI deep surveys. Also, the number density estimated here is in good agreement with both the logN-logS of `normal galaxies in the Chandra Deep Field North (extrapolated to bright fluxes) and model predictions based on the X-ray luminosity function of local star-forming galaxies.
133 - E. Piconcelli 2002
We briefly report on an on-going spectroscopic study of hard X-ray sources selected serendipitously in 12 XMM-Newton fields. Results for the analysis of the 41 sources from the first seven EPIC observations have been discussed in a previous paper (Pi concelli et al. 2002, Paper I) where we found an absolute fraction of X-ray absorbed sources (~30%) lower than expected (~50%) by the predictions of popular CXB synthesis models at F(2-10)~5x10**(-14) erg cm**-2 s**-1. We present here the preliminary results concerning the whole sample including five new deeper XMM-Newton measurements increasing the sample to 90 sources. Even if still on-going, the present study appears to confirm and extend down to F(2-10)~10**(-14) erg cm**-2 s**-1 the above mismatch between observational data and theoretical expectations regarding the fraction of absorbed sources. Furthermore the sample average spectral index of 1.5-1.6 is steeper than the CXB slope indicating that the majority of obscured sources making the bulk of the CXB resides at even lower hard X-ray fluxes.
345 - V. Lazaro 2005
The low background, good spatial resolution and great sensitivity of the EPIC-pn camera on XMM-Newton give useful limits for the detection of extended sources even during the short exposures made during slewing maneouvers. In this paper we attempt to illustrate the potential of the XMM-Newton slew survey as a tool for analysing flux-limited samples of clusters of galaxies and other sources of spatially extended X-ray emission.
The XMM-Newton Survey Science Center is currently conducting an optical identification programme of serendipitous EPIC sources at low galactic latitudes. The aim of this study is to quantify the various populations contributing to the overall X-ray e mission of the Galaxy and elaborate identification rules that can be later applied to the bulk of the low galactic latitude EPIC detections. We report here on preliminary results from an optical campaign performed in two very low b XMM-Newton fields and discuss the contributions of the various X-ray populations. This paper is presented on behalf of the Survey Science Center and of the AXIS collaboration.
67 - J. Nevalainen 2005
We use XMM-Newton blank-sky and closed-cover background data to explore the background subtraction methods for large extended sources filling the EPIC field of view, such as nearby galaxy clusters, for which local background estimation is difficult. We find that to keep the 0.8-7.0 keV band background modeling uncertainty tolerable, one has to use a much more restrictive filter than that commonly applied. In particular, because flares have highly variable spectra, not all of them are identified by filtering the E>10 keV light curve. We tried using the outer part of the EPIC FOV for monitoring the background in a softer band (1-5 keV). We find that one needs to discard the time periods when either the hard-band or the soft-band rate exceeds the nominal value by more than 20% in order to limit the 90% CL background uncertainty to between 5% at E=4-7 keV and 20% at E=0.8-1 keV, for both MOS and PN. This compares to a 10-30% respective PN uncertainty when only the hard-band light curve is used for filtering, and to a 15-45% PN uncertainty when applying the commonly used 2-3 sigma filtering method. We illustrate our method on a nearby cluster A1795. The above background uncertainties convert into the systematic temperature uncertainties between 1% at r=3-4 arcmin and 20--25% (~1 keV for A1795) at r=10-15 arcmin. For comparison, the commonly applied 2-3 sigma clipping of the hard-band light curve misses a significant amount of flares, rendering the temperatures beyond r=10 arcmin unconstrained. Thus, the background uncertainties do not prohibit the EPIC temperature profile analysis of low-brightness regions, like outer regions of galaxy clusters, provided a conservative flare filtering such as the double filtering method with 20% limits is used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا