ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Electric Field Screening by Electron-Positron Pairs in the Pulsar Magnetosphere II

62   0   0.0 ( 0 )
 نشر من قبل Shinpei Shibata
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study on the self-consistency of the pulsar polar cap model, i.e., the problem of whether the field-aligned electric field is screened by electron-positron pairs that are injected beyond the pair production front. We solve the one-dimensional Poisson equation along a magnetic field line, both analytically and numerically, for a given current density incorporating effects of returning positrons, and we obtain the conditions for the electric-field screening. The formula which we obtained gives the screening distance and the return flux for given primary current density, field geometry and pair creation rate at the pair production front. If the geometrical screening is not possible, for instance, on field lines with a super-Goldreich-Julian current, then the electric field at the pair production front is constrained to be fairly small in comparison with values expected typically by the conventional polar cap models. This is because (1) positive space charge by pair polarization is limited to a small value, and (2) returning of positrons leave pair electrons behind. A previous belief that pair creation with a pair density higher than the Goldreich-Julian density immediately screens out the electric field is unjustified at least for for a super Goldreich-Julian current density. We suggest some possibilities to resolve this difficulty.



قيم البحث

اقرأ أيضاً

147 - Shinpei Shibata 2001
We solve the one-dimensional Poisson equation along a magnetic field line, both analytically and numerically, for a given current density incorporating effects of returning positrons. We find that the number of returning positrons per one primary ele ctrons should be smaller than unity, and the returning of positrons occurs only in a very short braking distance scale. As a result, for realistic polar cap parameters, the accelerating electric field will not be screened out; thus, the model fails to be self-consistent. A previous belief that pair creation with a pair density higher than the Goldreich-Julian density immediately screens out the electric field is unjustified. We suggest some possibilities to resolve this difficulty.
We consider the electron-positron plasma generation processes in the magnetospheres of magnetars - neutron stars with strong surface magnetic fields, B = 10^(14) - 10^(15) G. We show that the photon splitting in a magnetic field, which is effective a t large field strengths, does not lead to the suppression of plasma multiplication, but manifests itself in a high polarization of gamma-ray photons. A high magnetic field strength does not give rise to the second generation of particles produced by synchrotron photons. However, the density of the first-generation particles produced by curvature photons in the magnetospheres of magnetars can exceed the density of the same particles in the magnetospheres of ordinary radio pulsars. The plasma generation inefficiency can be attributed only to slow magnetar rotation, which causes the energy range of the produced particles to narrow. We have found a boundary in the P - Pdot diagram that defines the plasma generation threshold in a magnetar magnetosphere.
Recent $gamma$-ray observations suggest that the particle acceleration occurs at the outer region of the pulsar magnetosphere. The magnetic field lines in the outer acceleration region (OAR) are connected to the neutron star surface (NSS). If copious electron--positron pairs are produced near the NSS, such pairs flow into the OAR and screen the electric field there. To activate the OAR, the electromagnetic cascade due to the electric field near the NSS should be suppressed. However, since a return current is expected along the field lines through the OAR, the outflow extracted from the NSS alone cannot screen the electric field just above the NSS. In this paper, we analytically and numerically study the electric-field screening at the NSS taking into account the effects of the back-flowing particles from the OAR. In certain limited cases, the electric field is screened without significant pair cascade if only ultrarelativistic particles ($gammagg1$) flow back to the NSS. On the other hand, if electron--positron pairs with a significant number density and mildly relativistic temperature, expected to distribute in a wide region of the magnetosphere, flow back to the NSS, these particles adjust the current and charge densities, so that the electric field can be screened without pair cascade. We obtain the condition for the number density of particles to screen the electric field at the NSS. We also find that in ion-extracted case from the NSS, bunches of particles are ejected to the outer region quasi-periodically, which is a possible mechanism of observed radio emission.
The key properties of the wave propagation theory in the magntosphere of radio pulsars based on the Kravtsov-Orlov equation are presented. It is shown that for radio pulsars with known circular polarization and the swing of the linear polarization po sition angle one can determine which mode, ordinary or extraordinary one, forms mainly the mean profile of the radio emission. The comparison of the observational data with the theory predictions demonstrates their good agreement.
We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smo oth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا