ﻻ يوجد ملخص باللغة العربية
We solve the one-dimensional Poisson equation along a magnetic field line, both analytically and numerically, for a given current density incorporating effects of returning positrons. We find that the number of returning positrons per one primary electrons should be smaller than unity, and the returning of positrons occurs only in a very short braking distance scale. As a result, for realistic polar cap parameters, the accelerating electric field will not be screened out; thus, the model fails to be self-consistent. A previous belief that pair creation with a pair density higher than the Goldreich-Julian density immediately screens out the electric field is unjustified. We suggest some possibilities to resolve this difficulty.
We study on the self-consistency of the pulsar polar cap model, i.e., the problem of whether the field-aligned electric field is screened by electron-positron pairs that are injected beyond the pair production front. We solve the one-dimensional Pois
The electronic states at graphene-SiO$_2$ interface and their inhomogeneity was investigated using the back-gate-voltage dependence of local tunnel spectra acquired with a scanning tunneling microscope. The conductance spectra show two, or occasional
We study the screening of a homogeneous oscillating external electric field $E_0$ in noble-gas atoms using atomic many-body calculations. At zero frequency of the oscillations ($omega=0$) the screened field $E(r)$ vanishes at the nucleus, $E(0)=0$. H
According to the Schiff theorem, the atomic electrons completely screen the atomic nucleus from an external static electric field. However, this is not the case if the field is time-dependent. Electronic orbitals in atoms either shield the nucleus fr
The expanded variant of the lectures delivered at the 39th ITEP Winter School in 2011