ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter constraints for flat cosmologies from CMB and 2dFGRS power spectra

67   0   0.0 ( 0 )
 نشر من قبل William Percival
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We constrain flat cosmological models with a joint likelihood analysis of a new compilation of data from the cosmic microwave background (CMB) and from the 2dF Galaxy Redshift Survey (2dFGRS). Fitting the CMB alone yields a known degeneracy between the Hubble constant h and the matter density Omega_m, which arises mainly from preserving the location of the peaks in the angular power spectrum. This `horizon-angle degeneracy is considered in some detail and shown to follow a simple relation Omega_m h^{3.4} = constant. Adding the 2dFGRS power spectrum constrains Omega_m h and breaks the degeneracy. If tensor anisotropies are assumed to be negligible, we obtain values for the Hubble constant h=0.665 +/- 0.047, the matter density Omega_m=0.313 +/- 0.055, and the physical CDM and baryon densities Omega_c h^2 = 0.115 +/- 0.009, Omega_b h^2 = 0.022 +/- 0.002 (standard rms errors). Including a possible tensor component causes very little change to these figures; we set a upper limit to the tensor-to-scalar ratio of r<0.7 at 95% confidence. We then show how these data can be used to constrain the equation of state of the vacuum, and find w<-0.52 at 95% confidence. The preferred cosmological model is thus very well specified, and we discuss the precision with which future CMB data can be predicted, given the model assumptions. The 2dFGRS power-spectrum data and covariance matrix, and the CMB data compilation used here, are available from http://www.roe.ac.uk/~wjp/



قيم البحث

اقرأ أيضاً

204 - Ariel G. Sanchez 2005
We derive constraints on cosmological parameters using the power spectrum of galaxy clustering measured from the final two-degree field galaxy redshift survey (2dFGRS) and a compilation of measurements of the temperature power spectrum and temperatur e-polarization cross-correlation of the cosmic microwave background radiation. We analyse a range of parameter sets and priors, allowing for massive neutrinos, curvature, tensors and general dark energy models. In all cases, the combination of datasets tightens the constraints, with the most dramatic improvements found for the density of dark matter and the energy-density of dark energy. If we assume a flat universe, we find a matter density parameter of $Omega_{rm m}=0.237 pm 0.020$, a baryon density parameter of $Omega_{rm b} = 0.041 pm 0.002$, a Hubble constant of $H_{0}=74pm2 {rm kms}^{-1}{rm Mpc}^{-1}$, a linear theory matter fluctuation amplitude of $sigma_{8}=0.77pm0.05$ and a scalar spectral index of $n_{rm s}=0.954 pm 0.023$ (all errors show the 68% interval). Our estimate of $n_{rm s}$ is only marginally consistent with the scale invariant value $n_{rm s}=1$; this spectrum is formally excluded at the 95% confidence level. However, the detection of a tilt in the spectrum is sensitive to the choice of parameter space. If we allow the equation of state of the dark energy to float, we find $w_{rm DE}= -0.85_{-0.17}^{+0.18}$, consistent with a cosmological constant. We also place new limits on the mass fraction of massive neutrinos: $f_{ u} < 0.105$ at the 95% level, corresponding to $sum m_{ u} < 1.2$ eV.
We present new cosmic microwave background (CMB) anisotropy results from the combined analysis of the three flights of the first Medium Scale Anisotropy Measurement (MSAM1). This balloon-borne bolometric instrument measured about 10 square degrees of sky at half-degree resolution in 4 frequency bands from 5.2 icm to 20 icm with a high signal-to-noise ratio. Here we present an overview of our analysis methods, compare the results from the three flights, derive new constraints on the CMB power spectrum from the combined data and reduce the data to total-power Wiener-filtered maps of the CMB. A key feature of this new analysis is a determination of the amplitude of CMB fluctuations at $ell sim 400$. The analysis technique is described in a companion paper by Knox.
In a class of models designed to solve the cosmological constant problem by coupling scalar or tensor classical fields to the space-time curvature, the universal scale factor grows as a power law in the age, $a propto t^alpha$, regardless of the matt er content or cosmological epoch. We investigate constraints on such power-law cosmologies from the present age of the Universe, the magnitude-redshift relation, and from primordial nucleosynthesis. Constraints from the current age of the Universe and from the high-redshift supernovae data require large $alpha$ ($approx 1$), while consistency with the inferred primordial abundances of deuterium and helium-4 forces $alpha$ to lie in a very narrow range around a lower value ($approx 0.55$). Inconsistency between these independent cosmological constraints suggests that such power-law cosmologies are not viable.
328 - S. Basilakos 2008
We study the dynamics of the scalar field FLRW flat cosmological models within the framework of the Unified Dark Matter (UDM) scenario. In this model we find that the main cosmological functions such as the scale factor of the Universe, the scalar fi eld, the Hubble flow and the equation of state parameter are defined in terms of hyperbolic functions. These analytical solutions can accommodate an accelerated expansion, equivalent to either the dark energy or the standard $Lambda$ models. Performing a joint likelihood analysis of the recent supernovae type Ia data and the Baryonic Acoustic Oscillations traced by the SDSS galaxies, we place tight constraints on the main cosmological parameters of the UDM cosmological scenario. Finally, we compare the UDM scenario with various dark energy models namely $Lambda$ cosmology, parametric dark energy model and variable Chaplygin gas. We find that the UDM scalar field model provides a large and small scale dynamics which are in fair agreement with the predictions by the above dark energy models although there are some differences especially at high redshifts.
We investigate the potential of using cosmic voids as a probe to constrain cosmological parameters through the gravitational lensing effect of the cosmic microwave background (CMB) and make predictions for the next generation surveys. By assuming the detection of a series of $approx 5 - 10$ voids along a line of sight within a square-degree patch of the sky, we found that they can be used to break the degeneracy direction of some of the cosmological parameter constraints (for example $omega_b$ and $Omega_Lambda$) in comparison with the constraints from random CMB skies with the same size area for a survey with extensive integration time. This analysis is based on our current knowledge of the average void profile and analytical estimates of the void number function. We also provide combined cosmological parameter constraints between a sky patch where series of voids are detected and a patch without voids (a randomly selected patch). The full potential of this technique relies on an accurate determination of the void profile to $approx 10$% level. For a small-area CMB observation with extensive integration time and a high signal-to-noise ratio, CMB lensing with such series of voids will provide a complementary route to cosmological parameter constraints to the CMB observations. Example of parameter constraints with a series of five voids on a $1.0^{circ} times 1.0^{circ}$ patch of the sky are $100omega_b = 2.20 pm 0.27$, $omega_c = 0.120 pm 0.022$, $Omega_Lambda = 0.682 pm 0.078$, $Delta_{mathcal{R}}^2 = left(2.22 pm 7.79right) times 10^{-9}$, $n_s = 0.962 pm 0.097$ and $tau = 0.925 pm 1.747$ at 68% C.L.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا