ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational Constraints On Power-Law Cosmologies

58   0   0.0 ( 0 )
 نشر من قبل Gary Steigman
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a class of models designed to solve the cosmological constant problem by coupling scalar or tensor classical fields to the space-time curvature, the universal scale factor grows as a power law in the age, $a propto t^alpha$, regardless of the matter content or cosmological epoch. We investigate constraints on such power-law cosmologies from the present age of the Universe, the magnitude-redshift relation, and from primordial nucleosynthesis. Constraints from the current age of the Universe and from the high-redshift supernovae data require large $alpha$ ($approx 1$), while consistency with the inferred primordial abundances of deuterium and helium-4 forces $alpha$ to lie in a very narrow range around a lower value ($approx 0.55$). Inconsistency between these independent cosmological constraints suggests that such power-law cosmologies are not viable.

قيم البحث

اقرأ أيضاً

In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale facto r of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.
We have recently considered cosmologies in which the Universal scale factor varies as a power of the age of the Universe and concluded that they cannot satisfy the observational constraints on the present age, the magnitude-redshift relation for SN I a, and the primordial element (D, He3, He4, and Li7) abundances. This claim has been challenged in a proposal that suggested a high baryon density model (Omega_B*h*h = 0.3) with an expansion factor varing linearly with time could be consistent with the observed abundance of primoridal helium-4, while satisfying the age and magnitude-redshift constraints. In this paper we further explore primordial nucleosynthesis in generic power-law cosmologies, including the linear case, concluding that models selected to satisfy the other observational constraints are incapable of accounting for all the light element abundances.
CMB observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers $10^{-3}$ Mpc$^{-1}$ < k < 0.1 Mpc$^{-1}$, [1-8]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc$^{-1}$ < k < 0.7 Mpc$^{-1}$ [9-18]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc$^{-1} < k < 3$ Mpc$^{-1}$; [19]). These observations indicate that the primordial power spectrum is nearly scale-invariant with amplitude close to $2 times 10^{-9}$, [5, 20-25]. They also strongly support Inflation and motivate us to obtain constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. One could obtain limits to much higher values of $k < 10^5$ Mpc$^{-1}$ and with less sensitivity even higher to $k < 10^{19}- 10^{23}$ Mpc$^{-1}$ using limits from CMB spectral distortions(SD)and on ultracompact minihalo objects(UCMHs)and Primordial Black Holes(PBHs). In this paper, we revisit and collect all the known constraints on both PBHs and UCMHs. We show that unless one uses SD, PBHs give us very relaxed bounds on the primordial curvature perturbations. UCMHs are very informative over a reasonable $k$ range($3 < k < 10^6$ Mpc$^{-1}$)and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of Dark Matter that could be PBHs. Failure to satisfy these conditions would lead to over production of the UCMHs, which is inconsistent with the observations. Therefore, we can almost rule out PBH within their overlap scales with the UCMHs. We consider the UCMH bounds from experiments such as $gamma$-rays, Neutrinos, Reionization, pulsar-timing and SD. We show that they lead to comparable results independent of the form of DM.
The constraints on a general form of the power-law potential and the dissipation coefficient in the framework of warm single field inflation imposed by Planck data will be investigated. {By Considering a quasi-static Universe, besides a slow-roll con dition, the suitable regions in which a pair of theoretical free parameters are in good agreement with Planck results will be estimated}. In this method instead of a set of free parameters, we can visualize a region of free parameters that can satisfy the precision limits on theoretical results. On the other side, when we consider the preformed quantity for the amplitude of scalar perturbations, the conflict between obtained results for free parameters in different steps dramatically will be decreased. {As have done in prominent} literature, based on the friction of the environment, we can divide the primordial Universe to the two different epochs namely weak and strong dissipative regimes. For the aforementioned eras, the free parameters of the model will be constrained and the best regions will be obtained. To do so, the main inflationary observables such as tensor-to-scalar ratio, power-spectra of density perturbations and gravitational waves, scalar and tensor spectral indices, running spectral index and the number of e-folds in both weak and strong regimes will be obtained. Ultimately, it can be visualized, this model can make concord between theoretical results and data originated from cosmic microwave background and Planck $2013$, $2015$ and $2018$.
We present new observational constraints on the elastic scattering of dark matter with electrons for dark matter masses between 10 keV and 1 TeV. We consider scenarios in which the momentum-transfer cross section has a power-law dependence on the rel ative particle velocity, with a power-law index $n in {-4,-2,0,2,4,6}$. We search for evidence of dark matter scattering through its suppression of structure formation. Measurements of the cosmic microwave background temperature, polarization, and lensing anisotropy from textit{Planck} 2018 data and of the Milky Way satellite abundance measurements from the Dark Energy Survey and Pan-STARRS1 show no evidence of interactions. We use these data sets to obtain upper limits on the scattering cross section, comparing them with exclusion bounds from electronic recoil data in direct detection experiments. Our results provide the strongest bounds available for dark matter--electron scattering derived from the distribution of matter in the Universe, extending down to sub-MeV dark matter masses, where current direct detection experiments lose sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا