ترغب بنشر مسار تعليمي؟ اضغط هنا

Images of very high energy cosmic ray sources in the Galaxy: I. A source towards the Galactic Centre

76   0   0.0 ( 0 )
 نشر من قبل Wlodzimierz Bednarek
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent analyses of the anisotropy of cosmic rays at $10^{18}$ eV (the AGASA and SUGAR data) show significant excesses from regions close to the Galactic Centre and Cygnus. Our aim is to check whether such anisotropies can be caused by single sources of charged particles. We investigate propagation of protons in two models of the Galactic regular magnetic field (with the irregular component included) assuming that the particles are injected by a short lived discrete source lying in the direction of the Galactic Centre. We show that apart from a prompt image of the source, the regular magnetic field may cause delayed images at quite large angular distances from the actual source direction. The image is strongly dependent on the time elapsed after ejection of particles and it is also very sensitive to their energy. For the most favourable conditions for particle acceleration by a young pulsar the predicted fluxes are two to four order of magnitudes higher than that observed. The particular numbers depend strongly on the Galactic magnetic field model adopted but it looks that a single pulsar in the Galactic Centre could be responsible for the observed excess.


قيم البحث

اقرأ أيضاً

Recent progress in pushing the sensitivity of the Imaging Atmospheric Cherenkov Technique into the 10 mCrab regime has enabled first sensitive observations of the innermost few 100 pc of the Milky Way in Very High Energy (VHE; >100 GeV) gamma rays. T hese observations are a valuable tool to understand the acceleration and propagation of energetic particles near the Galactic Centre. Remarkably, besides two compact gamma-ray sources, faint diffuse gamma-ray emission has been discovered with high significance. The current VHE gamma-ray view of the Galactic Centre region is reviewed, and possible counterparts of the gamma-ray sources and the origin of the diffuse emission are discussed. The future prospects for VHE Galactic Centre observations are discussed based on order-of-magnitude estimates for a CTA type array of telescopes.
Progress in the Imaging Atmospheric Cherenkov Technique has enabled first sensitive observations of the innermost few 100 pc of the Milky Way in Very High Energy (VHE; >100 GeV) gamma rays. Observations by the H.E.S.S. instrument deliver the at date most precise data on this peculiar region, and provide an interesting view onto the acceleration and propagation of energetic particles near the Galactic Centre. Besides two point-like sources -- one coincident with the supermassive black hole (SMBH) Sgr A* -- diffuse VHE emission has been discovered within a 1 deg region around the centre. The current VHE gamma-ray view of the region is reviewed, and possible counterparts of the gamma-ray sources and the origin of the diffuse emission are discussed.
We present results from deep observations towards the Cygnus region using 300 hours of very-high-energy (VHE) $gamma$-ray data taken with the VERITAS Cherenkov telescope array and over seven years of high-energy $gamma$-ray data taken with the Ferm i satellite at an energy above 1 GeV. As the brightest region of diffuse $gamma$-ray emission in the northern sky, the Cygnus region provides a promising area to probe the origins of cosmic rays. We report the identification of a potential Fermi-LAT counterpart to VER J2031+415 (TeV J2032+4130), and resolve the extended VHE source VER J2019+368 into two source candidates (VER J2018+367* and VER J2020+368*) and characterize their energy spectra. The Fermi-LAT morphology of 3FGL 2021.0+4031e (the Gamma-Cygni supernova remnant) was examined and a region of enhanced emission coincident with VER J2019+407 was identified and jointly fit with the VERITAS data. By modeling 3FGL J2015.6+3709 as two sources, one located at the location of the pulsar wind nebula CTB 87 and one at the quasar QSO J2015+371, a continuous spectrum from 1 GeV to 10 TeV was extracted for VER J2016+371 (CTB 87). An additional 71 locations coincident with Fermi-LAT sources and other potential objects of interest were tested for VHE $gamma$-ray emission, with no emission detected and upper limits on the differential flux placed at an average of 2.3% of the Crab Nebula ux. We interpret these observations in a multiwavelength context and present the most detailed $gamma$-ray view of the region to date.
Transient astronomical sources are typically powered by compact objects and usually signify highly explosive or dynamic events. While radio astronomy has an impressive record of obtaining high time resolution observations, usually it is achieved in q uite narrow fields-of-view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X- and gamma-ray bands in which wide-field instruments routinely detect transient sources. Here we report a new transient source, GCRT J1745-3009, detected in 2002 during a moderately wide-field radio transient monitoring program of the Galactic center (GC) region at 0.33 GHz. The characteristics of its bursts are unlike those known for any other class of radio transient. If located in or near the GC, its brightness temperature (~10^16 K) and the implied energy density within GCRT J1745-3009 vastly exceeds that observed in most other classes of radio astronomical sources, and is consistent with coherent emission processes rarely observed. We conclude that GCRT J1745-3009 is the first member of a new class of radio transient sources, the first of possibly many new classes to be identified through current and upcoming radio surveys.
The H.E.S.S. telescope array has observed the complex Monoceros Loop SNR/Rosette Nebula region which contains unidentified high energy EGRET sources and potential very-high-energy (VHE) gamma-ray source. We announce the discovery of a new point-like VHE gamma-ray sources, HESS J0632+057. It is located close to the rim of the Monoceros SNR and has no clear counterpart at other wavelengths. Data from the NANTEN telescope have been used to investigate hadronic interactions with nearby molecular clouds. We found no evidence for a clear association. The VHE gamma-ray emission is possibly associated with the lower energy gamma-ray source 3EG J0634+0521, a weak X-ray source 1RXS J063258.3+054857 and the Be-star MWC 148.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا