ترغب بنشر مسار تعليمي؟ اضغط هنا

A Very High Energy $gamma$-Ray Survey towards the Cygnus Region of the Galaxy

262   0   0.0 ( 0 )
 نشر من قبل Ralph Bird
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from deep observations towards the Cygnus region using 300 hours of very-high-energy (VHE) $gamma$-ray data taken with the VERITAS Cherenkov telescope array and over seven years of high-energy $gamma$-ray data taken with the Fermi satellite at an energy above 1 GeV. As the brightest region of diffuse $gamma$-ray emission in the northern sky, the Cygnus region provides a promising area to probe the origins of cosmic rays. We report the identification of a potential Fermi-LAT counterpart to VER J2031+415 (TeV J2032+4130), and resolve the extended VHE source VER J2019+368 into two source candidates (VER J2018+367* and VER J2020+368*) and characterize their energy spectra. The Fermi-LAT morphology of 3FGL 2021.0+4031e (the Gamma-Cygni supernova remnant) was examined and a region of enhanced emission coincident with VER J2019+407 was identified and jointly fit with the VERITAS data. By modeling 3FGL J2015.6+3709 as two sources, one located at the location of the pulsar wind nebula CTB 87 and one at the quasar QSO J2015+371, a continuous spectrum from 1 GeV to 10 TeV was extracted for VER J2016+371 (CTB 87). An additional 71 locations coincident with Fermi-LAT sources and other potential objects of interest were tested for VHE $gamma$-ray emission, with no emission detected and upper limits on the differential flux placed at an average of 2.3% of the Crab Nebula ux. We interpret these observations in a multiwavelength context and present the most detailed $gamma$-ray view of the region to date.

قيم البحث

اقرأ أيضاً

We report observations of gamma-ray emissions with energies in the 100 TeV energy region from the Cygnus region in our Galaxy. Two sources are significantly detected in the directions of the Cygnus OB1 and OB2 associations. Based on their positional coincidences, we associate one with a pulsar PSR J2032+4127 and the other mainly with a pulsar wind nebula PWN G75.2+0.1 with the pulsar moving away from its original birthplace situated around the centroid of the observed gamma-ray emission. This work would stimulate further studies of particle acceleration mechanisms at these gamma-ray sources.
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10^12 electron Volts (eV) and are bright sourc es of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy M87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black-hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; $Egtrsim60$ MeV) gamma-ray range with textit{Fermi}-LAT associates this emission with the outflow. Former MAGIC observations revealed a hint of flaring activity in the very high-energy (VHE; $Egtrsim100$ GeV) regime during this X-ray state. We analyze $sim97$ hr of Cygnus X-1 data taken with the MAGIC telescopes between July 2007 and October 2014. To shed light on the correlation between hard X-ray and VHE gamma rays as previously suggested, we study each main X-ray state separately. We perform an orbital phase-folded analysis to look for variability in the VHE band. Additionally, to place this variability behavior in a multiwavelength context, we compare our results with textit{Fermi}-LAT, textit{AGILE}, textit{Swift}-BAT, textit{MAXI}, textit{RXTE}-ASM, AMI and RATAN-600 data. We do not detect Cygnus X-1 in the VHE regime. We establish upper limits for each X-ray state, assuming a power-law distribution with photon index $Gamma=3.2$. For steady emission in the hard and soft X-ray states, we set integral upper limits at 95% confidence level for energies above 200 GeV at $2.6times10^{-12}$~photons cm$^{-2}$s$^{-1}$ and $1.0times10^{-11}$~photons cm$^{-2}$s$^{-1}$, respectively. We rule out steady VHE gamma-ray emission above this energy range, at the level of the MAGIC sensitivity, originating in the interaction between the relativistic jet and the surrounding medium, while the emission above this flux level produced inside the binary still remains a valid possibility.
Recent progress in pushing the sensitivity of the Imaging Atmospheric Cherenkov Technique into the 10 mCrab regime has enabled first sensitive observations of the innermost few 100 pc of the Milky Way in Very High Energy (VHE; >100 GeV) gamma rays. T hese observations are a valuable tool to understand the acceleration and propagation of energetic particles near the Galactic Centre. Remarkably, besides two compact gamma-ray sources, faint diffuse gamma-ray emission has been discovered with high significance. The current VHE gamma-ray view of the Galactic Centre region is reviewed, and possible counterparts of the gamma-ray sources and the origin of the diffuse emission are discussed. The future prospects for VHE Galactic Centre observations are discussed based on order-of-magnitude estimates for a CTA type array of telescopes.
The view of the gamma-ray universe is being continuously expanded by space high energy (HE) and ground based very-high energy (VHE) observatories. Yet, the angular resolution limitation still precludes a straightforward identification of these gamma- ray emitting sources. Radio observations are an effective tool for searching their possible counterparts at lower energies because the same population of relativistic electrons responsible for radio emission can also produce HE/VHE emission via inverse-Compton scattering. The Cygnus region is crowded by many gamma-ray sources, most of them remaining unidentified. In order to find possible counterparts to unidentified gamma-ray sources, we carried out a deep survey of the Cygnus region using the Giant Metrewave Radio Telescope at 610 MHz and 325 MHz. We did a detailed search for counterparts in the error circle of HE/VHE sources. We report 36 radio sources found in the error ellipse of 15 HE sources, and 11 in those of VHE sources. Eight sources have very steep radio spectral index alpha <-1.5, which are most likely to be pulsars and will be followed up for periodicity search. Such a significant number of pulsar candidates within the error circle of HE/VHE sources prompts fresh look at the energetics and efficacy of pulsars and pulsar wind nebulae in this context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا