ترغب بنشر مسار تعليمي؟ اضغط هنا

ASTRO-F/FIS Observing Simulation: Detection Limits for Point Sources

46   0   0.0 ( 0 )
 نشر من قبل Woong-Seob Jeong
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the observing simulation software FISVI (FIS Virtual Instrument), which was developed for the Far-Infrared Surveyor (FIS) that will be on the Japanese infrared astronomy mission ASTRO-F. The FISVI has two purposes: one is to check the specifications and performances of the ASTRO-F/FIS as a whole; the other is to prepare input data sets for the data analysis softwares prior to launch. In the FISVI, special care was taken by introducing the Compiled PSF (Point Spread Function) to optimise inevitable, but time-consuming, convolution processes. With the Compiled PSF, we reduce the computation time by an order of magnitude. The photon and readout noises are included in the simulations. We estimate the detection limits for point sources from the simulation of virtual patches of the sky mostly consisting of distant galaxies. We studied the importance of source confusion for simple power-law models for N(>S), the number of sources brighter than S. We found that source confusion plays a dominant role in the detection limits only for models with rapid luminosity evolution for the galaxy counts, the evolution of which is suggested by recent observations.

قيم البحث

اقرأ أيضاً

We present the characterization and calibration of the Slow-Scan observation mode of the Far-Infrared Surveyor (FIS) onboard the AKARI satellite. The FIS, one of the two focal-plane instruments on AKARI, has four photometric bands between 50--180 um with two types of Ge:Ga array detectors. In addition to the All-Sky Survey, FIS has also taken detailed far-infrared images of selected targets by using the Slow-Scan mode. The sensitivity of the Slow-Scan mode is one to two orders of magnitude better than that of the All-Sky Survey, because the exposure time on a targeted source is much longer. The point spread functions (PSFs) were obtained by observing several bright point-like objects such as asteroids, stars, and galaxies. The derived full widths at the half maximum (FWHMs) are ~30 for the two shorter wavelength bands and ~40 for the two longer wavelength bands, being consistent with those expected by the optical simulation, although a certain amount of excess is seen in the tails of the PSFs. The flux calibration has been performed by the observations of well-established photometric calibration standards (asteroids and stars) in a wide range of fluxes. After establishing the method of aperture photometry, the photometric accuracy for point-sources is better than +-15% in all of the bands expect for the longest wavelength.
41 - Takao Nakagawa 2001
ASTRO-F is the second Japanese space mission for infrared astronomy and is scheduled to be launched into a sun-synchronous polar orbit by the Japanese M-V rocket in February 2004. ASTRO-F has a cooled 67 cm telescope with two focal plane instruments: one is the Far-Infrared Surveyor (FIS) and the other is the Infrared Camera (IRC). The main purpose of FIS is to perform the all-sky survey with four photometric bands in the wavelength range of 50 - 200 $mu$m. The advantages of the FIS survey over the IRAS survey are (1) higher spatial resolution ($30$ at 50-110 $mu$m and $50$ at 110-200 $mu$m) and (2) better sensitivity by one to two orders of magnitude. The FIS survey will provide the next generation far-infrared survey catalogs, which will be ideal inputs for observations by FIRST. The other instrument, IRC, will make deep imaging and low-resolution spectroscopic observations in the spectral range of $1.8-26 mu$m. The IRC will make large-area surveys with its wide field of view ($10 times 10$), and will be complementary with the FIRST observations at longer wavelengths.
This paper considers filters (the Mexican hat wavelet, the matched and the scale-adaptive filters) that optimize the detection/separation of point sources on a background. We make a one-dimensional treatment, we assume that the sources have a Gaussia n profile, i. e. $tau (x) = e^{- x^2/2R^2}$, and a background modelled by an homogeneous and isotropic Gaussian random field, characterised by a power spectrum $P(q)propto q^{-gamma}, gamma geq 0$. Local peak detection is used after filtering. Then, the Neyman-Pearson criterion is used to define the confidence level for detections and a comparison of filters is done based on the number of spurious and true detections. We have performed numerical simulations to test theoretical ideas and conclude that the results of the simulations agree with the analytical results.
242 - Woong-Seob Jeong 2007
The Cosmic Far-Infrared Background (CFIRB) contains information about the number and distribution of contributing sources and thus gives us an important key to understand the evolution of galaxies. Using a confusion study to set a fundamental limit t o the observations, we investigate the potential to explore the CFIRB with AKARI/FIS deep observations. The Far-Infrared Surveyor (FIS) is one of the focal-plane instruments on the AKARI (formerly known as ASTRO-F) satellite, which was launched in early 2006. Based upon source distribution models assuming three different cosmological evolutionary scenarios (no evolution, weak evolution, and strong evolution), an extensive model for diffuse emission from infrared cirrus, and instrumental noise estimates, we present a comprehensive analysis for the determination of the confusion levels for deep far-infrared observations. We use our derived sensitivities to suggest the best observational strategy for the AKARI/FIS mission to detect the CFIRB fluctuations. If the source distribution follows the evolutionary models, observations will be mostly limited by source confusion. We find that we will be able to detect the CFIRB fluctuations and that these will in turn provide information to discriminate between the evolutionary scenarios of galaxies in most low-to-medium cirrus regions.
138 - Hideo Matsuhara 2005
ASTRO-F is the first Japanese satellite mission dedicated for large area surveys in the infrared. The 69cm aperture telescope and scientific instruments are cooled to 6K by liquid Helium and mechanical coolers. During the expected mission life of mor e than 500 days, ASTRO-F will make the most advanced all-sky survey in the mid- to far-infrared since the Infrared astronomical Satellite (IRAS). The survey will be made in 6 wavebands and will include the first all sky survey at >100-160(mu)m. Deep imaging and spectroscopic surveys with pointed observations will also be carried out in 13 wavelength bands from 2-160(mu)m. ASTRO-F should detect more than a half million galaxies tracing the large-scale structure of the Universe out to redshifts of unity, detecting rare, exotic extraordinarily luminous objects at high redshift, numerous brown dwarfs, Vega-like stars, protostars, and will reveal the large-scale structure of nearby galactic star forming regions. ASTRO-F is a perfect complement to Spitzer Space Telescope in respect of its wide sky and wavelength coverage. Approximately 30 percent of pointed observations will be allocated to an open-time opportunity. Updated pre-flight ensitivities as well as the observation plan including the large-area surveys are described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا