ترغب بنشر مسار تعليمي؟ اضغط هنا

The ASTRO-F Mission : Large Area Infrared Survey

139   0   0.0 ( 0 )
 نشر من قبل Hideo Matsuhara
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hideo Matsuhara




اسأل ChatGPT حول البحث

ASTRO-F is the first Japanese satellite mission dedicated for large area surveys in the infrared. The 69cm aperture telescope and scientific instruments are cooled to 6K by liquid Helium and mechanical coolers. During the expected mission life of more than 500 days, ASTRO-F will make the most advanced all-sky survey in the mid- to far-infrared since the Infrared astronomical Satellite (IRAS). The survey will be made in 6 wavebands and will include the first all sky survey at >100-160(mu)m. Deep imaging and spectroscopic surveys with pointed observations will also be carried out in 13 wavelength bands from 2-160(mu)m. ASTRO-F should detect more than a half million galaxies tracing the large-scale structure of the Universe out to redshifts of unity, detecting rare, exotic extraordinarily luminous objects at high redshift, numerous brown dwarfs, Vega-like stars, protostars, and will reveal the large-scale structure of nearby galactic star forming regions. ASTRO-F is a perfect complement to Spitzer Space Telescope in respect of its wide sky and wavelength coverage. Approximately 30 percent of pointed observations will be allocated to an open-time opportunity. Updated pre-flight ensitivities as well as the observation plan including the large-area surveys are described.

قيم البحث

اقرأ أيضاً

The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe by performing high -resolution, high-throughput spectroscopy with moderate angular resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of Delta E ~7 eV provided by the micro-calorimeter will enable a wide variety of important science themes to be pursued.
The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA context. The eXTP/LAD envisages a deployed 3.4 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we provide an overview of the LAD instrument design, including new elements with respect to the earlier LOFT configuration.
41 - Takao Nakagawa 2001
ASTRO-F is the second Japanese space mission for infrared astronomy and is scheduled to be launched into a sun-synchronous polar orbit by the Japanese M-V rocket in February 2004. ASTRO-F has a cooled 67 cm telescope with two focal plane instruments: one is the Far-Infrared Surveyor (FIS) and the other is the Infrared Camera (IRC). The main purpose of FIS is to perform the all-sky survey with four photometric bands in the wavelength range of 50 - 200 $mu$m. The advantages of the FIS survey over the IRAS survey are (1) higher spatial resolution ($30$ at 50-110 $mu$m and $50$ at 110-200 $mu$m) and (2) better sensitivity by one to two orders of magnitude. The FIS survey will provide the next generation far-infrared survey catalogs, which will be ideal inputs for observations by FIRST. The other instrument, IRC, will make deep imaging and low-resolution spectroscopic observations in the spectral range of $1.8-26 mu$m. The IRC will make large-area surveys with its wide field of view ($10 times 10$), and will be complementary with the FIRST observations at longer wavelengths.
47 - Chris Pearson 2002
We review the next generation Japanese infrared space mission, ASTRO-F. ASTRO-F will be the first survey of the entire sky at infrared wavelengths since the IRAS mission almost 20 years ago. ASTRO-F will survey the entire sky in 4 far-infrared bands from 50-200microns and 2 mid-infrared bands at 9 and 20microns to sensitivities of 10-1000 times deeper than the IRAS satellite at angular resolutions of 25-45arcsec (c.f. IRAS 2-5arcmins). ASTRO-F can be considered a SUPER-IRAS. Using the galaxy evolution model of Pearson (2001) we produce expected numbers of sources under 3 different cosmological world models. We predict that ASTRO-F will detect of the order of 10s millions of sources in the far-infrared wavelength bands, most of which will be dusty LIG/ULIGs of which as many as half will lie at redshifts greater than unity. We produce number-redshift distributions, flux-redshift and colour-colour diagrams for the survey and discuss various segregation and photometric redshift techniques. Furthermore, we investigate the large scale structure scales that will be accessed by ASTRO-F, discovering that ASTRO-F and SIRTF-SWIRE probe both different scales and redshift domains and concluding that the 2 missions will supplement rather than supplant one another.
We present preliminary source counts at 6.7um and 15um from the Preliminary Analysis of the European Large Area ISO survey, with limiting flux densities of ~2mJy at 15um & ~1mJy at 6.7um. We separate the stellar contribution from the extragalactic us ing identifications with APM sources made with the likelihood ratio technique. We quantify the completeness & reliability of our source extraction using (a) repeated observations over small areas, (b) cross-IDs with stars of known spectral type, (c) detections of the PSF wings around bright sources, (d) comparison with independent algorithms. Flux calibration at 15um was performed using stellar IDs; the calibration does not agree with the pre-flight estimates, probably due to effects of detector hysteresis and photometric aperture correction. The 6.7um extragalactic counts are broadly reproduced in the Pearson & Rowan-Robinson model, but the Franceschini et al. (1997) model underpredicts the observed source density by ~0.5-1 dex, though the photometry at 6.7um is still preliminary. At 15um the extragalactic counts are in excellent agreement with the predictions of the Pearson & Rowan-Robinson (1996), Franceschini et al. (1994), Guiderdoni et al. (1997) and the evolving models of Xu et al. (1998), over 7 orders of magnitude in 15um flux density. The counts agree with other estimates from the ISOCAM instrument at overlapping flux densities (Elbaz et al. 1999), provided a consistent flux calibration is used. Luminosity evolution at a rate of (1+z)^3, incorporating mid-IR spectral features, provides a better fit to the 15um differential counts than (1+z)^4 density evolution. No-evolution models are excluded, and implying that below around 10mJy at 15um the source counts become dominated by an evolving cosmological population of dust-shrouded starbursts and/or active galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا