ترغب بنشر مسار تعليمي؟ اضغط هنا

The carrier of the 30 micron emission feature in evolved stars. A simple model using magnesium sulfide

117   0   0.0 ( 0 )
 نشر من قبل S. Hony
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 2-45 micron spectra of a large sample of carbon-rich evolved stars in order to study the ``30 micron feature. We find the ``30 micron feature in sources in a wide range of sources: low mass loss carbon stars, extreme carbon-stars, post-AGB objects and planetary nebulae. We extract the profiles from the sources by using a simple systematic approach to model the continuum. We find large variations in the wavelength and width of the extracted profiles of the ``30 micron feature. We modelled the whole range of profiles in a simple way by using magnesium sulfide (MgS) dust grains with a MgS grain temperature different from the continuum temperature. The systematic change in peak positions can be explained by cooling of MgS grains as the star evolves off the AGB. In several sources we find that a residual emission excess at ~26 micron can also be fitted using MgS grains but with a different grains shape distribution. The profiles of the ``30 micron feature in planetary nebulae are narrower than our simple MgS model predicts. We discuss the possible reasons for this difference. We find a sample of warm carbon-stars with very cold MgS grains. We discuss possible causes for this phenomenon. We find no evidence for rapid destruction of MgS during the planetary nebula phase and conclude that the MgS may survive to be incorporated in the ISM.

قيم البحث

اقرأ أيضاً

103 - B.W.Jiang , 2005
The mysterious 21mu emission feature seen in 12 proto-planetary nebulae (PPNe) remains unidentified since its first detection in 1989. Over a dozen of candidate materials have been proposed within the past decade, but none of them has received genera l acceptance. Very recently, silicon carbide (SiC) grains with impurities were suggested to be the carrier of this enigmatic feature, based on recent laboratory data that doped SiC grains exhibit a resonance at ~21mu. This proposal gains strength from the fact that SiC is a common dust species in carbon-rich circumstellar envelopes. However, SiC dust has a strong vibrational band at ~11.3mu. We show in this Letter that in order to be consistent with the observed flux ratios of the 11.3mu feature to the 21mu feature, the band strength of the 21mu resonance has to be very strong, too strong to be consistent with current laboratory measurements. But this does not yet readily rule out the SiC hypothesis since recent experimental results have demonstrated that the 21mu resonance of doped SiC becomes stronger as the C impurity increases. Further laboratory measurements of SiC dust with high fractions of C impurity are urgently needed to test the hypothesis of SiC as the carrier of the 21mu feature.
The 3.3 $mu$m unidentified infrared emission feature is commonly attributed to C-H stretching band of aromatic molecules. Astronomical observations have shown that this feature is composed of two separate bands at 3.28 and 3.30 $mu$m and the origin o f these two bands is unclear. In this paper, we perform vibrational analyses based on quantum mechanical calculations of 153 organic molecules, including both pure aromatic molecules and molecules with mixed aromatic/olefinic/aliphatic hydridizations. We find that many of the C-H stretching vibrational modes in polycyclic aromatic hydrocarbon (PAH) molecules are coupled. Even considering the un-coupled modes only, the correlation between the band intensity ratios and the structure of the PAH molecule is not observed and the 3.28 and 3.30 $mu$m features cannot be directly interpreted in the PAH model. Based on these results, the possible aromatic, olefinic and aliphatic origins of the 3.3 $mu$m feature are discussed. We suggest that the 3.28 $mu$m feature is assigned to aromatic C-H stretch whereas the 3.30 $mu$m feature is olefinic. From the ratio of these two features, the relative olefinic to aromatic content of the carrier can be determined.
We present a new 0.9 resolution 3.29 micron narrowband image of the reflection nebula NGC 7023. We find that the 3.29 micron IEF in NGC 7023 is brightest in narrow filaments NW of the illuminating star. These filaments have been seen in images of K, molecular hydrogen emission lines, the 6.2 and 11.3 micron IEFs, and HCO+. We also detect 3.29 micron emission faintly but distinctly between the filaments and the star. The 3.29 micron image is in contrast to narrowband images at 2.09, 2.14, and 2.18 micron, which show an extended emission peak midway between the filaments and the star, and much fainter emission near the filaments. The [2.18]-[3.29] color shows a wide variation, ranging from 3.4-3.6 mag at the 2 micron continuum peak to 5.5 mag in the filaments. We observe [2.18]-[3.29] to increase smoothly with increasing distance from the star, up until the filament, suggesting that the main difference between the spatial distributions of the 2 micron continuum and the the 3.29 micron emission is related to the incident stellar flux. Our result suggests that the 3.29 micron IEF carriers are likely to be distinct from, but related to, the 2 micron continuum emitters. Our finding also imply that, in NGC 7023, the 2 micron continuum emitters are mainly associated with HI, while the 3.29 micron IEF carriers are primarily found in warm molecular hydrogen, but that both can survive in HI or molecular hydrogen. (abridged)
This paper reports a detection of the 30 micron emission feature from the C-rich Asymptotic Giant Branch (AGB) star IRAS 03313+6058 based on the ISO-SWS observation. Modeling of the spectral energy distribution shows that this emission starts at abou t 20 micron and possibly extends to the limit (45 micron) of the observation. By assuming MgS as the carrier, the number ratio of Sulfur atom in MgS to Hydrogen atom in total, n(S)/n(H), is 3. 10{-6} from model fitting. A comparison of this emission feature is made with other AGB and post-AGB objects.
We present JCMT SCUBA-2 $450mu$m and $850mu$m observations of 14 Asymptotic Giant Branch (AGB) stars (9 O--rich, 4 C-rich and 1 S--type) and one Red Supergiant (RSG) in the Solar Neighbourhood. We combine these observations with emph{Herschel}/PACS o bservations at $70mu$m and $160mu$m and obtain azimuthally-averaged surface-brightness profiles and their PSF subtracted residuals. The extent of the SCUBA-2 850 $mu$m emission ranges from 0.01 to 0.16 pc with an average of $sim40%$ of the total flux being emitted from the extended component. By fitting a modified black-body to the four-point SED at each point along the radial profile we derive the temperature ($T$), spectral index of dust emissivity ($beta$) and dust column density ($Sigma$) as a function of radius. For all the sources, the density profile deviates significantly from what is expected for a constant mass-loss rate, showing that all the sources have undergone variations in mass-loss during this evolutionary phase. In combination with results from CO line emission, we determined the dust-to-gas mass ratio for all the sources in our sample. We find that, when sources are grouped according to their chemistry, the resulting average dust-to-gas ratios are consistent with the respective canonical values. However we see a range of values with significant scatter which indicate the importance of including spatial information when deriving these numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا