ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibration of the distance scale from galactic Cepheids:II Use of the HIPPARCOS calibration

74   0   0.0 ( 0 )
 نشر من قبل Paturel
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New estimate of the distances of 36 nearby galaxies is presented. It is based on the calibration of the V- and I-band Period-Lumi- nosity relations for galactic Cepheids measured by the HIPPARCOS mission. The distance moduli are obtained in a classical way. The statistical bias due to the incompleteness of the sample is corrected according to the precepts introduced by Teerikorpi (1987). We adopt a constant slope (the one obtained with LMC Cepheids). The correction for incompleteness bias introduce an uncertainty which depends on each galaxy. On the mean, this uncertainty is small (0.04 mag) but it may reach 0.3 mag. We show that the un- certainty due to the correction of the extinction is small (propably less than 0.05 mag.). The correlation between the metallicity and the morphological type of the host galaxy sug- gests us to reduce the application to spiral galaxies in order to bypass the problem of metallicity. We suspect that the adopted PL slopes are not valid for all morphological types of galaxies. This may induce a mean systematic shift of 0.1 mag on distance moduli. A comparison with the distance moduli recently published by Freedman et al. (2001) shows there is a reasonably good agreement with our distance moduli.

قيم البحث

اقرأ أيضاً

New estimates of the distances of 36 nearby galaxies are presented based on accurate distances of galactic Cepheids obtained by Gieren, Fouque and Gomez (1998) from the geometrical Barnes-Evans method. The concept of sosie is applied to extend the distance determination to extragalactic Cepheids without assuming the linearity of the PL relation. Doing so, the distance moduli are obtained in a straightforward way. The correction for extinction is made using two photometric bands (V and I) according to the principles introduced by Freedman and Madore (1990). Finally, the statistical bias due to the incompleteness of the sample is corrected according to the precepts introduced by Teerikorpi (1987) without introducing any free parameters (except the distance modulus itself in an iterative scheme). The final distance moduli depend on the adopted extinction ratio {R_V}/{R_I} and on the limiting apparent magnitude of the sample. A comparison with the distance moduli recently published by the Hubble Space Telescope Key Project (HSTKP) team reveals a fair agreement when the same ratio {R_V}/{R_I} is used but shows a small discrepancy at large distance. In order to bypass the uncertainty due to the metallicity effect it is suggested to consider only galaxies having nearly the same metallicity as the calibrating Cepheids (i.e. Solar metallicity). The internal uncertainty of the distances is about 0.1 magnitude but the total uncertainty may reach 0.3 magnitude.
Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997) . A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.
In Yoshii et al. (2014), we described a new method for measuring extragalactic distances based on dust reverberation in active galactic nuclei (AGNs), and we validated our new method with Cepheid variable stars. In this paper, we validate our new met hod with Type Ia supernovae (SNe Ia) which occurred in two of the AGN host galaxies during our AGN monitoring program: SN 2004bd in NGC 3786 and SN 2008ec in NGC 7469. Their multicolor light curves were observed and analyzed using two widely accepted methods for measuring SN distances, and the distance moduli derived are $mu=33.47pm 0.15$ for SN 2004bd and $33.83pm 0.07$ for SN 2008ec. These results are used to obtain independently the distance measurement calibration factor, $g$. The $g$ value obtained from the SN Ia discussed in this paper is $g_{rm SN} = 10.61pm 0.50$ which matches, within the range of 1$sigma$ uncertainty, $g_{rm DUST} = 10.60$, previously calculated ab initio in Yoshii et al. (2014). Having validated our new method for measuring extragalactic distances, we use our new method to calibrate reverberation distances derived from variations of H$beta$ emission in the AGN broad line region (BLR), extending the Hubble diagram to $zapprox 0.3$ where distinguishing between cosmologies is becoming possible.
We present the modeling tool we developed to incorporate multi-technique observations of Cepheids in a single pulsation model: the Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). The combination of angular diameters from optical interferomet ry, radial velocities and photometry with the coming Gaia DR2 parallaxes of nearby Galactic Cepheids will soon enable us to calibrate the projection factor of the classical Parallax-of-Pulsation method. This will extend its applicability to Cepheids too distant for accurate Gaia parallax measurements, and allow us to precisely calibrate the Leavitt laws zero point. As an example application, we present the SPIPS model of the long-period Cepheid RS Pup that provides a measurement of its projection factor, using the independent distance estimated from its light echoes.
Deep neural networks (DNNs) are poorly calibrated when trained in conventional ways. To improve confidence calibration of DNNs, we propose a novel training method, distance-based learning from errors (DBLE). DBLE bases its confidence estimation on di stances in the representation space. In DBLE, we first adapt prototypical learning to train classification models. It yields a representation space where the distance between a test sample and its ground truth class center can calibrate the models classification performance. At inference, however, these distances are not available due to the lack of ground truth labels. To circumvent this by inferring the distance for every test sample, we propose to train a confidence model jointly with the classification model. We integrate this into training by merely learning from mis-classified training samples, which we show to be highly beneficial for effective learning. On multiple datasets and DNN architectures, we demonstrate that DBLE outperforms alternative single-model confidence calibration approaches. DBLE also achieves comparable performance with computationally-expensive ensemble approaches with lower computational cost and lower number of parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا