ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of the complex absorption apparent in the 2-6 keV X-ray spectrum of the bright nearby Seyfert galaxy NGC 4151. We first utilize the large bandpass and medium spectral resolution afforded by BeppoSAX data to construct a 1-100 keV spectral template, which assumes the absorption arises in both warm (i.e. partially photoionized) and cold gas present in the line of sight to the active nucleus of the source. Application of this spectral model to an ASCA long-look observation of NGC 4151 reveals a partial correlation between the underlying continuum flux and the ionization state of the warm absorber. Such a correlation is an intrinsic property of a warm absorber and argues strongly in favour of this interpretation for the complex absorbing column over alternative partial covering models. The inferred relatively low density for the warm gas, implies an equilibration timescale for the dominant ions of the same order or longer than the timescale of the continuum variability. It follows that the warm component will invariably be observed in a non-equilibrium ionization state. We also find that (i) the reported hardening of the spectrum of NGC 4151 as the continuum level falls may be simply due to the presence of an underlying (hard and relatively constant) Compton-reflection component and (ii) the iron Ka line has a relatively narrow Gaussian profile and a line flux that remains constant over both short (days) and long (months to years) timescales - a relativistically broadened iron Ka feature was not required in our modelling.
The Seyfert 1 galaxy NGC4151 is characterized by complex X-ray absorption, well described by a dual absorber, composed of a uniform mildly ionized gas and a cold system that partially covers the central source. However, in one of the 5 BeppoSAX obser
We consider new Suzaku data for NGC 3516 taken during 2009, along with other recent X-ray observations of the source. The cumulative characteristics of NGC 3516 cannot be explained without invoking changes in the line-of-sight absorption. Contrary to
We present the first extensive study of the coronal line variability in an active galaxy. Our data set for the nearby source NGC 4151 consists of six epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about eight
The centre of NGC 4151 has been observed in the J-band with the SMIRFS integral field unit (IFU) on the UK Infrared Telescope. A map of [Fe II] emission is derived, and compared with the distributions of the optical narrow line region and radio jet.
We present the results of a GHRS program to monitor the absorption lines in the spectrum of the Seyfert 1 galaxy NGC 4151 caused by outflowing gas from the nucleus. Although we see subtle changes over the four year period in the GHRS spectra of the b