ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of [Fe II] emission in NGC 4151

82   0   0.0 ( 0 )
 نشر من قبل James E. H. Turner
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف James E.H. Turner




اسأل ChatGPT حول البحث

The centre of NGC 4151 has been observed in the J-band with the SMIRFS integral field unit (IFU) on the UK Infrared Telescope. A map of [Fe II] emission is derived, and compared with the distributions of the optical narrow line region and radio jet. We conclude that, because the [Fe II] emission is associated more closely with the visible narrow-line region than with the radio jet, it arises mainly through photoionization of gas by collimated X-rays from the Seyfert nucleus. The velocity field and strength with respect to [Pa B] are found to be consistent with this argument. The performance of the IFU is considered briefly, and techniques for observation and data analysis are discussed.



قيم البحث

اقرأ أيضاً

We used a very large set of models of broad emission line (BEL) clouds in AGN to investigate the formation of the observed Fe II emission lines. We show that photoionized BEL clouds cannot produce both the observed shape and observed equivalent width of the 2200-2800A Fe II UV bump unless there is considerable velocity structure corresponding to a microturbulent velocity parameter v_turb > 100 km/s for the LOC models used here. This could be either microturbulence in gas that is confined by some phenomenon such as MHD waves, or a velocity shear such as in the various models of winds flowing off the surfaces of accretion disks. The alternative way that we can find to simultaneously match both the observed shape and equivalent width of the Fe II UV bump is for the Fe II emission to be the result of collisional excitation in a warm, dense gas. Such gas would emit very few lines other than Fe II. However, since the collisionally excited gas would constitute yet another component in an already complicated picture of the BELR, we prefer the model involving turbulence. In either model, the strength of Fe II emission relative to the emission lines of other ions such as Mg II depends as much on other parameters (either v_turb or the surface area of the collisionally excited gas) as it does on the iron abundance. Therefore, the measurement of the iron abundance from the FeII emission in quasars becomes a more difficult problem.
The recent detection of X-ray reverberation lags, especially in the Fe Kalpha line region, around Active Galactic Nuclei (AGN) has opened up the possibility of studying the time-resolved response (reflection) of hard X-rays from the accretion disk ar ound supermassive black holes. Here, we use general relativistic transfer functions for reflection of X-rays from a point source located at some height above the black hole to study the time lags expected as a function of frequency and energy in the Fe Kalpha line region. We explore the models and the dependence of the lags on key parameters such as the height of the X-ray source, accretion disk inclination, black hole spin and black hole mass. We then compare these models with the observed frequency and energy dependence of the Fe Kalpha line lag in NGC 4151. Assuming the optical reverberation mapping mass of $4.6times10^7~M_odot$ we get a best fit to the lag profile across the Fe Kalpha line in the frequency range $(1-2)times10^{-5}$ Hz for an X-ray source located at a height $h = 7^{+2.9}_{-2.6}~R_G$ with a maximally spinning black hole and an inclination $i < 30^circ$.
Narrow-band imaging of the nuclear region of NGC 4151 with the Hubble Space Telescope is presented. The filter bandpasses isolate line emission in various high velocity ranges in several ions. Slitless and long-slit spectra of the region with the Spa ce Telescope Imaging Spectrograph also indicate the locations of high velocity gas. These emission regions are faint and are interspersed among the bright emission clouds seen in direct images. They have radial velocities up to 1400 km/s relative to the nucleus, and are found in both approach and recession on both sides of the nucleus. This contrasts strongly with the bright emission line clouds which have been discussed previously as showing bidirectional outflow with velocities within 400 km/s of the nucleus. We discuss the possible connections of the high velocity material with the radio jet and the nuclear radiation.
We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the o ptical continuum. The amplitude of variability of the optical Fe II emission is 50% - 75% that of Hbeta and the ultraviolet Fe II emission varies with an even larger amplitude than Hbeta. However, accurate measurement of the flux in these blends proves to be very difficult even using excellent Fe II templates to fit the spectra. We are able to constrain only weakly the optical Fe II emission-line response timescale to a value less than several weeks; this upper limit exceeds all the reliably measured emission-line lags in this source so it is not particularly meaningful. Nevertheless, the fact that the optical Fe II and continuum flux variations are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request.
We have analysed Chandra/High Energy Transmission Gratings spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth order spectral images show extended H- and He-like O and Ne, up to a distance $r sim$ 200 pc from the nucleus . Using the 1st order spectra, we measure an average line velocity $sim -230$ km s$^{-1}$, suggesting significant outflow of X-ray gas. We generated Cloudy photoionisation models to fit the 1st order spectra. We required three emission-line components, with column density, log$N_{H}$, and ionisation parameter, log$U$, of 22.5/1.0, 22.5/0.19, and 23.0/-0.50, respectively. To estimate the total mass of ionised gas and the mass outflow rates, we applied the model parameters to fit the zeroth order emission-line profiles of Ne~IX and Ne~X. We determined the total mass of $approx 5.4 times$ 10$^{5}$ M_sun. Assuming the same kinematic profile as that for the [O~III] gas, the peak X-ray mass outflow rate was $approx 1.8$ M_sun yr$^{-1}$, at $r sim 150$ pc. The total mass and mass outflow rates are similar to those determined using [O~III], implying that the X-ray gas is a major outflow component. However, unlike the optical outflows, the X-ray outflow rate does not drop off at $r >$ 100 pc, which suggests that it may have a greater impact on the host galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا