ترغب بنشر مسار تعليمي؟ اضغط هنا

LIFTS: an Imaging Fourier Transform Spectrograph for Astronomy

289   0   0.0 ( 0 )
 نشر من قبل Sebastien Blais-Ouellette
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first astronomical observations of the Livermore Imaging Fourier Transform Spectrograph for visible-band astronomy using the 3.5-meter Apache Point Observatory.



قيم البحث

اقرأ أيضاً

We have designed and constructed a ``dispersed Fourier Transform Spectrometer (dFTS), consisting of a conventional FTS followed by a grating spectrometer. By combining these two devices, we negate a substantial fraction of the sensitivity disadvantag e of a conventional FTS for high resolution, broadband, optical spectroscopy, while preserving many of the advantages inherent to interferometric spectrometers. In addition, we have implemented a simple and inexpensive laser metrology system, which enables very precise calibration of the interferometer wavelength scale. The fusion of interferometric and dispersive technologies with a laser metrology system yields an instrument well-suited to stellar spectroscopy, velocimetry, and extrasolar planet detection, which is competitive with existing high-resolution, high accuracy stellar spectrometers. In this paper, we describe the design of our prototype dFTS, explain the algorithm we use to efficiently reconstruct a broadband spectrum from a sequence of narrowband interferograms, and present initial observations and resulting velocimetry of stellar targets.
We present an overview of SITELLE, an Imaging Fourier Transform Spectrometer (iFTS) available at the 3.6-meter Canada-France-Hawaii Telescope. SITELLE is a Michelson-type interferometer able to reconstruct the spectrum of every light source within it s 11 field of view in filter-selected bands of the visible (350 to 900 nm). The spectral resolution can be adjusted up to R = 10 000 and the spatial resolution is seeing-limited and sampled at 0.32 arcsec per pixel. We describe the design of the instrument as well as the data reduction and analysis process. To illustrate SITELLEs capabilities, we present some of the data obtained during and since the August 2015 commissioning run. In particular, we demonstrate its ability to separate the components of the [OII] $lambdalambda$ 3726,29 doublet in Orion and to reach R = 9500 around H-alpha; to detect diffuse emission at a level of 4 x 10e-17 erg/cm2/s/arcsec2; to obtain integrated spectra of stellar absorption lines in galaxies despite the well-known multiplex disadvantage of the iFTS; and to detect emission-line galaxies at different redshifts.
Imaging data from upcoming radio telescopes requires distributing processing at large scales. This paper presents a distributed Fourier transform algorithm for radio interferometry processing. It generates arbitrary grid chunks with full non-coplanar ity corrections while minimising memory residency, data transfer and compute work. We utilise window functions to isolate the influence between regions of grid and image space. This allows us to distribute image data between nodes and construct parts of grid space exactly when and where needed. The developed prototype easily handles image data terabytes in size, while generating visibilities at great throughput and accuracy. Scaling is demonstrated to be better than cubic in baseline length, reducing the risk involved in growing radio astronomy processing to the Square Kilometre Array and similar telescopes.
Knowledge gained through X-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. Atomic details of sample structures is achievable by X-ray cry stallography, however, it is only applied to crystalline structures. Imaging techniques based on X-ray coherent diffraction or zone plates are capable of resolving the internal structure of non-crystalline materials at nanoscales, but it is still a challenge to achieve atomic resolution. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudo-thermal hard X-rays by measuring the second-order intensity correlation function of the light. We show that high resolution Fourier-transform diffraction pattern of a complex amplitude sample can be achieved at Fresnel region and the amplitude and phase distributions of a sample in spatial domain can be retrieved successfully. The method of lensless X-ray Fourier-transform ghost imaging extends X-ray crystallography to non-crystalline samples, and its spatial resolution is limited only by the wavelength of the X-ray, thus atomic resolution should be routinely obtainable. Since highly coherent X-ray source is not required, comparing to conventional X-ray coherent diffraction imaging, the method can be implemented with laboratory X-ray sources, and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutron and electron where the intensive coherent source usually is not available.
We present the very first wide-field, 11 by 11 arcmin, optical spectral mapping of M16, one of the most famous star-forming regions in the Galaxy. The data were acquired with the new imaging Fourier transform spectrograph SITELLE mounted on the Canad a-France-Hawaii Telescope (CFHT). We obtained three spectral cubes with R=10000 (SN1 filter), 1500 (SN2 filter) and 600 (SN3 filter), centered on the Pillars of Creation and the HH216 flow, covering the main optical nebular emission lines: [O II]3726,29 (SN1), Hb, [O III]4959,5007 (SN2), [N II]6548,84, Ha, and [S II]6717,31 (SN3). We validate the performance, calibration, and data reduction of SITELLE, and analyze the structures in the large field-of-view in terms of their kinematics and nebular emission. We compared the SITELLE data to MUSE integral field observations and other spectroscopic and narrow-band imaging data to validate the performance of SITELLE. We computed gas-phase metallicities via the strong-line method, performed a pixel-by-pixel fit to the main emission lines to derive kinematics of the ionized gas, computed the mass-loss rate of the Eastern pillar (the Spire), and combined the SITELLE data with near-infrared narrow-band imaging to characterize the HH216 flow. The comparison with previously published fluxes demonstrates very good agreement. We disentangle the dependence of the gas-phase metallicities (derived via abundance-tracing line ratios) on the degree of ionization and obtain metallicities that are in excellent agreement with the literature. We confirm the bipolar structure of HH216, find evidence for episodic accretion from the source of the flow, and identify its likely driving source. We compute the mass-loss rate of the Spire pillar on the East side of the H II region and find excellent agreement with the correlation between the mass-loss rate and the ionizing photon flux from the nearby cluster NGC6611.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا