ﻻ يوجد ملخص باللغة العربية
The gravitational instability of expanding shells triggering the formation of clouds and stars is analyzed. Disks with different scale-heights, ambient and shell velocity dispersions, mid-plane densities, rotation rates and shear rates are explored with three dimensional numerical simulations in the thin shell approximation. Three conditions for the shell collapse are specified: the first is that it happens before a significant blow-out, the second requires that the shell collapses before it is distorted by Coriolis forces and shear, and the third requires that the internal pressure in the accumulated gas is small and the fragmentation is achieved within the expansion time. The gas-rich and slowly rotating galaxies are the best sites of the triggered star formation, concluding that its importance has been much larger at the times of galaxy formation compared to the present epoch.
The star formation triggered in dense walls of expanding shells will be discussed. The fragmentation process is studied using the linear and non-linear perturbation theory. The influence of the energy input, the ISM distribution and the speed of soun
Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majorit
We discuss fragmentation processes which induce star formation in dense walls of expanding shells. The influence of the energy input, the ISM scale-height and speed of sound in the ambient medium is tested. We formulate the condition for the gravitat
We present causal and positional evidence of triggered star formation in bright-rimmed clouds in OB associations, e.g., Ori OB1, and Lac OB1, by photoionization. The triggering process is seen also on a much larger scale in the Orion-Monoceros Comple
The origin of the stellar initial mass function (IMF) is a fundamental issue in the theory of star formation. It is generally fit with a composite power law. Some clues on the progenitors can be found in dense starless cores that have a core mass fun