ﻻ يوجد ملخص باللغة العربية
The energies and widths of gamma-ray lines emitted by ambient nuclei excited by flare-accelerated protons and alpha particles provide information on the ions directionality and spectra, and on the characteristics of the interaction region. We have measured the energies and widths of strong lines from de-excitations of 12C, 16O, and 20Ne in solar flares as a function of heliocentric angle. The line energies from all three nuclei exhibit ~1% redshifts for flares at small heliocentric angles, but are not shifted near the limb. The lines have widths of ~3% FWHM. We compare the 12C line measurements for flares at five different heliocentric angles with calculations for different interacting-particle distributions. A downward isotropic distribution (or one with a small upward component) provides a good fit to the line measurements. An angular distribution derived for particles that undergo significant pitch angle scattering by MHD turbulence in coronal magnetic loops provides comparably good fits.
$gamma$-ray production cross sections have been measured in proton irradiations of N, Ne and Si and $alpha$-particle irradiations of N and Ne. In the same experiment we extracted also line shapes for strong $gamma$-ray lines of $^{16}$O produced in p
Impulsive solar energetic particle events are widely believed to be due to the prompt escape into the interplanetary medium of flare-accelerated particles produced by solar eruptive events. According to the standard model for such events, however, pa
Classical novae are among the most frequent transient events in the Milky Way, and key agents of ongoing nucleosynthesis. Despite their large numbers, they have never been observed in soft $gamma$-ray emission. Measurements of their $gamma$-ray signa
Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincid
We examine the cosmic-ray protons (CRp) accelerated at collisionless shocks in galaxy clusters using cosmological structure formation simulations. We find that in the intracluster medium (ICM) within the virial radius of simulated clusters, only $sim