ترغب بنشر مسار تعليمي؟ اضغط هنا

The Circum-Galactic Environment of Bright IRAS Galaxies

114   0   0.0 ( 0 )
 نشر من قبل Yair Krongold
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies systematically, for the first time, the circumgalactic environment of bright IRAS galaxies as defined by Soifer et al. (1989). While the role of gravitational interaction for luminous and ultraluminous IRAS galaxies has been well established by various studies, the situation is by far more obscure in the IR luminosity range of the bright IRAS sample, 10^{10}Lsol < Lfir < 10^{11} Lsol. To easily identify nearby companion galaxies, the bright IRAS sample was restricted to 87 objects with redshift range 0.008 < z < 0.018 and galactic latitude > 30^{o}. A control sample, selected from the Center for Astrophysics redshift survey catalogue, includes 90 objects matching the Bright IRAS sample for distribution of isophotal diameter, redshift, and morphological type. From a search of nearby companion galaxies within 250 Kpc on the second-generation Digitized Sky Survey (DSS-II), we found that the circumgalactic environment of the Bright IRAS galaxies contains more large companions than the galaxies in the optically selected control sample, and is similar to that of Seyfert 2 galaxies. We found a weak correlation over a wide range of far IR luminosity (10^9 Lsol < Lfir < 10^{12.5}Lsol) between projected separation and Lfir, which confirms a very close relationship between star formation rate of a galaxy and the strength of gravitational perturbations. We also find that the far IR colors depend on whether a source is isolated or interacting. Finally, we discuss the intrinsic difference and evolution expectations for the bright IRAS galaxies and the control sample, as well as the relationship between starbursting and active galaxies.

قيم البحث

اقرأ أيضاً

We present a 3-dimensional study of the local (< 100 kpc) environment of Sy1, Sy2 and Bright IRAS Galaxies. For this purpose we use three galaxy samples (Sy1, Sy2, BIRG) located at high galactic latitudes as well as three control sample of non-active galaxies having the same morphological, redshift and diameter size distributions as the corresponding Seyfert or BIRG sample. Using the CfA2 and SSRS galaxy catalogues as well as our own spectroscopic observations, we find that the fraction of BIRGs with a close neighbor is significantly higher than that of their control sample. We also find that Sy2 galaxies demonstrate the same behaviour with BIRG galaxies but not with Sy1s which do not show any excess of companions with respect to their control sample galaxies. An additional analysis of the relation between FIR colors and activity type of the BIRGs shows a significant difference between the colors of strongly-interacting and non-interacting starbursts and a resemblance between the colors of non-interacting starbursts and Sy2s.Our results support an evolutionary scenario leading from Starbursting to a Sy2 and finally to an unobscured Sy1 galaxy, where close interactions play the role of the triggering mechanism.
74 - Ramona Augustin 2018
Gas flows in and out of galaxies through their circumgalactic medium (CGM) are poorly constrained and direct observations of this faint, diffuse medium remain challenging. We use a sample of five $z$ $sim$ 1-2 galaxy counterparts to Damped Lyman-$alp ha$ Absorbers (DLAs) to combine data on cold gas, metals and stellar content of the same galaxies. We present new HST/WFC3 imaging of these fields in 3-5 broadband filters and characterise the stellar properties of the host galaxies. By fitting the spectral energy distribution, we measure their stellar masses to be in the range of log($M_*$/$text{M}_{odot}$) $sim$ 9.1$-$10.7. Combining these with IFU observations, we find a large spread of baryon fractions inside the host galaxies, between 7 and 100 percent. Similarly, we find gas fractions between 3 and 56 percent. Given their star formation rates, these objects lie on the expected main sequence of galaxies. Emission line metallicities indicate they are consistent with the mass-metallicity relation for DLAs. We also report an apparent anti-correlation between the stellar masses and $N$(HI), which could be due to a dust bias effect or lower column density systems tracing more massive galaxies. We present new ALMA observations of one of the targets leading to a molecular gas mass of log($M_{rm mol}$/$text{M}_{odot}$) < 9.89. We also investigate the morphology of the DLA counterparts and find that most of the galaxies show a clumpy structure and suggest ongoing tidal interaction. Thanks to our high spatial resolution HST data, we gain new insights in the structural complexity of the CGM.
We analyze the physical properties and infall rates of the circum-galactic gas around disks obtained in multi-resolved, cosmological, AMR simulations. At intermediate and low redshifts, disks are embedded into an extended, hot, tenuous corona that co ntributes largely in fueling the disk with non-enriched gas whereas the accretion of enriched gas from tidal streams occurs throughout episodic events. We derive an infall rate close to the disk of the same value as the one of the star formation rate in the disk and its temporal evolution as a function of galacto-centric radius nicely shows that the growth of galactic disks proceeds according to an inside-out formation scenario.
IRAS flux densities, redshifts, and infrared luminosities are reported for all sources identified in the IRAS Revised Bright Galaxy Sample (RBGS), a complete flux-limited survey of all extragalactic objects with total 60 micron flux density greater t han 5.24 Jy, covering the entire sky surveyed by IRAS at Galactic latitude |b| > 5 degrees. The RBGS includes 629 objects, with a median (mean) sample redshift of 0.0082 (0.0126) and a maximum redshift of 0.0876. The RBGS supersedes the previous two-part IRAS Bright Galaxy Samples, which were compiled before the final (Pass 3) calibration of the IRAS Level 1 Archive in May 1990. The RBGS also makes use of more accurate and consistent automated methods to measure the flux of objects with extended emission. Basic properties of the RBGS sources are summarized, including estimated total infrared luminosities, as well as updates to cross-identifications with sources from optical galaxy catalogs established using the NASA/IPAC Extragalactic Database (NED). In addition, an atlas of images from the Digitized Sky Survey with overlays of the IRAS position uncertainty ellipse and annotated scale bars is provided for ease in visualizing the optical morphology in context with the angular and metric size of each object. The revised bolometric infrared luminosity function, phi(L_ir), for infrared bright galaxies in the local Universe remains best fit by a double power law, phi(L_ir) ~ L_ir^alpha, with alpha = -0.6 (+/- 0.1), and alpha = -2.2 (+/- 0.1) below and above the characteristic infrared luminosity L_ir ~ 10^{10.5} L_solar, respectively. (Abridged)
87 - Jiang-Tao Li 2020
The hot circum-galactic medium (CGM) represents the hot gas distributed beyond the stellar content of the galaxies while typically within their dark matter halos. It serves as a depository of energy and metal-enriched materials from galactic feedback and a reservoir from which the galaxy acquires fuels to form stars. It thus plays a critical role in the coevolution of galaxies and their environments. X-rays are one of the best ways to trace the hot CGM. I will briefly review what we have learned about the hot CGM based on X-ray observations over the past two decades, and what we still do not know. I will also briefly prospect what may be the foreseeable breakthrough in the next one or two decades with future X-ray missions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا