ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of naked helium stars with a neutron-star companion in close binary systems

52   0   0.0 ( 0 )
 نشر من قبل Jasinta Dewi
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. D. M. Dewi




اسأل ChatGPT حول البحث

The evolution of helium stars with masses of 1.5 - 6.7 M_sun in binary systems with a 1.4 M_sun neutron-star companion is presented. Such systems are assumed to be the remnants of Be/X-ray binaries with B-star masses in the range of 8 - 20 M_sun which underwent a case B or case C mass transfer and survived the common-envelope and spiral-in process. The orbital period is chosen such that the helium star fills its Roche lobe before the ignition of carbon in the centre. We distinguish case BA (in which mass transfer is initiated during helium core burning) from case BB (onset of Roche-lobe overflow occurs after helium core burning is terminated, but before the ignition of carbon). We found that the remnants of case BA mass transfer from 1.5 - 2.9 M_sun helium stars are heavy CO white dwarfs. This implies that a star initially as massive as 12 M_sun is able to become a white dwarf. CO white dwarfs are also produced from case BB mass transfer from 1.5 - 1.8 M_sun helium stars, while ONe white dwarfs are formed from 2.1 - 2.5 M_sun helium stars. Case BB mass transfer from more-massive helium stars with a neutron-star companion will produce a double neutron-star binary. We are able to distinguish the progenitors of type Ib supernovae (as the high-mass helium stars or systems in wide orbits) from those of type Ic supernovae (as the lower-mass helium stars or systems in close orbits). Finally, we derive a zone of avoidance in the helium star mass vs. initial orbital period diagram for producing neutron stars from helium stars.

قيم البحث

اقرأ أيضاً

We construct a set of binary evolutionary sequences for systems composed by a normal, solar composition, donor star together with a neutron star. We consider a variety of masses for each star as well as for the initial orbital period corresponding to systems that evolve to ultra-compact or millisecond pulsar-helium white dwarf pairs. Specifically, we select a set of donor star masses of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00, and 3.50 solar masses, whereas for the accreting neutron star we consider initial masses values of 0.8, 1.0, 1.2, and 1.4 solar masses. The considered initial orbital period interval ranges from 0.5 to 12 days. It is found that the evolution of systems, with fixed initial values for the orbital period and the mass of the normal donor star, heavily depends upon the mass of the neutron star. In some cases, varying the initial value of the neutron star mass, we obtain evolved configurations ranging from ultra-compact to widely separated objects. We also analyse the dependence of the final orbital period with the mass of the white dwarf. In agreement with previous expectations, our calculations show that the final orbital period-white dwarf mass relation is fairly insensitive to the initial neutron star mass value. A new period-mass relation based on our own calculations is proposed, which is in good agreement with period-mass relations available in the literature. As consequence of considering a set of values for the initial neutron star mass, these models allow finding different plausible initial configurations (donor and neutron star masses and orbital period interval) for some of the best observed binary systems of the kind we are interested in here. We apply our calculations to analyse the case of PSR J0437-4715.
In close binary systems composed of a normal, donor star and an accreting neutron star, the amount of material received by the accreting component is, so far, a real intrigue. In the literature there are available models that link the accretion disk surrounding the neutron star with the amount of material it receives, but there is no model linking the amount of matter lost by the donor star to that falling onto the neutron star. In this paper we explore the evolutionary response of these close binary systems when we vary the amount of material accreted by the neutron star. We consider a parameter beta, which represents the fraction of material lost by the normal star that can be accreted by the neutron star. beta is considered as constant throughout evolution. We have computed the evolution of a set of models considering initial donor star masses (in solar units) between 0.5 and 3.50, initial orbital periods (in days) between 0.175 and 12, initial masses of neutron stars (in solar units) of 0.80, 1.00, 1.20 and 1.40 and several values of beta. We assumed solar abundances. These systems evolve to ultracompact or to open binary systems, many of which form low mass helium white dwarfs. We present a grid of calculations and analyze how these results are affected upon changes in the value of beta. We find a weak dependence of the final donor star mass with respect to beta. In most cases this is also true for the final orbital period. The most sensitive quantity is the final mass of the accreting neutron star. As we do not know the initial mass and rotation rate of the neutron star of any system, we find that performing evolutionary studies is not helpful for determining beta.
98 - Yuan-Pei Yang 2021
Fast radio bursts (FRBs) are bright radio transients with short durations and extremely high brightness temperatures, and their physical origins are still unknown. Recently, a repeating source, FRB 20200120E, was found in a globular cluster in the ve ry nearby M81 galaxy. The associated globular cluster has an age of $sim9.13~{rm Gyr}$, and hosts an old population of stars. In this work, we consider that an FRB source is in a close binary system with a low-mass main sequence star as its companion. Due to the large burst energy of the FRB, when the companion star stops the FRB, its surface would be heated by the radiation-induced shock, and make re-emission. For a binary system with a solar-like companion star and an orbital period of a few days, we find that the re-emission is mainly at optical band, and with delays of a few seconds after the FRB. Its luminosity is several times larger than the solar luminosity, and the duration is about hundreds of seconds. Such a transient might be observable in the future multiwavelength follow-up observation for Galactic FRB sources.
We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, evolving either to helium white dwarf (HeWD) or ultra short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in-between as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such {it quasi - Roche Lobe Overflow} states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods $mathrm{P_{i}<1}$ day evolve into redbacks. Some of them produce low mass HeWDs, and a subgroup with shorter $mathrm{P_{i}}$ become black widows (BWs). Thus, BWs descent from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring that BW pulsars are very massive ($mathrm{gtrsim 2; M_{odot}}$). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.
76 - Kazutaka Oka 2002
We simulate numerically the surface flow of a gas-supplying companion star in a semi-detached binary system. Calculations are carried out for a region including only the mass-losing star, thus not the mass accreting star. The equation of state is tha t of an ideal gas characterized by a specific heat ratio gamma, and the case with gamma=5/3 is mainly studied. A system of eddies appears on the surface of the companion star: an eddy in the low pressure region near the L1 point, one around the high pressure at the north pole, and one or two eddies around the low pressure at the opposite side of the L1 point. Gas elements starting near the pole region rotate clockwise around the north pole (here the binary system rotates counter-clockwise as seen from the north pole). Because of viscosity, the gas drifts to the equatorial region, switches to the counter-clockwise eddy near the L1 point and flows through the L1 point to finally form the L1 stream. The flow field in the L1 region and the structure of the L1 stream are also considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا