ترغب بنشر مسار تعليمي؟ اضغط هنا

Can a Dusty Warm Absorber Model Reproduce the Soft X-ray Spectra of MCG-6-30-15 and Mrk 766?

125   0   0.0 ( 0 )
 نشر من قبل Masao Sako
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Sako




اسأل ChatGPT حول البحث

XMM-Newton RGS spectra of MCG-6-30-15 and Mrk 766 exhibit complex discrete structure, which was interpreted in a paper by Branduardi-Raymont et al. (2001) as evidence for the existence of relativistically broadened Lyman alpha emission from carbon, nitrogen, and oxygen, produced in the inner-most regions of an accretion disk around a Kerr black hole. This suggestion was subsequently criticized in a paper by Lee et al. (2001), who argued that for MCG-6-30-15, the Chandra HETG spectrum, which is partially overlapping the RGS in spectral coverage, is adequately fit by a dusty warm absorber model, with no relativistic line emission. We present a reanalysis of the original RGS data sets in terms of the Lee et al. (2001) model, and demonstrate that spectral models consisting of a smooth continuum with ionized and dust absorption alone cannot reproduce the RGS spectra of both objects. The original relativistic line model with warm absorption proposed by Branduardi-Raymont et al. (2001) provides a superior fit to the RGS data, both in the overall shape of the spectrum and in the discrete absorption lines. Limits on the amount of X-ray absorption by dust particles are discussed. We also discuss a possible theoretical interpretation for the putative relativistic Lyman alpha line emission in terms of the photoionized surface layers of the inner regions of an accretion disk.

قيم البحث

اقرأ أيضاً

XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the Narrow Line Seyfert 1 galaxies MCG -6-30-15 and Mrk 766 are physically and spectroscopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter. We propose that the remarkably similar features detected in both objects in the 5 - 35 A band are H-like oxygen, nitrogen, and carbon emission lines, gravitationally redshifted and broadened by relativistic effects in the vicinity of a Kerr black hole. We discuss the implications of our interpretation, and demonstrate that the derived parameters can be physically self-consistent.
We present detailed evidence for a warm absorber in the Seyfert 1 galaxy MCG--6-30-15 and dispute earlier claims for relativistic O line emission. The HETG spectra show numerous narrow, unresolved (FWHM < 200 km/s) absorption lines from a wide range of ionization states of N, O, Mg, Ne, Si, S, Ar, and Fe. The O VII edge and 1s^2--1snp resonance line series to n=9 are clearly detected at rest in the AGN frame. We attribute previous reports of an apparently highly redshifted O VII edge to the 1s^2--1snp (n > 5) O VII resonance lines, and a neutral Fe L absorption complex. The shape of the Fe L feature is nearly identical to that seen in the spectra of several X-ray binaries, and in laboratory data. The implied dust column density agrees with that obtained from reddening studies, and gives the first direct X-ray evidence for dust embedded in a warm absorber. The O VIII resonance lines and weak edge are also detected, and the spectral rollover below 2 keV is explained by the superposition of numerous absorption lines and edges. We identify, for the first time, a KLL resonance in the O VI photoabsorption cross section, giving a measure of the O VI column density. The O VII (f) emission detected at the systemic velocity implies a covering fraction of ~5% (depending on the observed vs. time-averaged ionizing flux). Our observations show that a dusty warm absorber model is not only adequate to explain all the spectral features > 0.48 keV (< 26 AA) the data REQUIRE it. This contradicts the interpretation of Branduardi-Raymont et al. (2001) that this spectral region is dominated by highly relativistic line emission from the vicinity of the black hole.
58 - C. Otani , T. Kii , C.S. Reynolds 1995
We present the results of a 4 day ASCA observation of the Seyfert galaxy MCG-6-30-15, focussing on the nature of the X-ray absorption by the warm absorber, characterizd by the K-edges of the intermediately ionized oxygen, OVII and OVIII. We confirm t hat the column density of OVIII changes on a timescale of $sim 10^4$~s when the X-ray continuum flux decreases. The significant anti-correlation of column density with continuum flux gives direct evidence that the warm absorber is photoionized by the X-ray continuum. From the timescale of the variation of the OVIII column density, we estimate that it originates from gas within a radius of about $10^{17}cm$ of the central engine. In contrast, the depth of the OVII edge shows no response to the continuum flux, which indicates that it originates in gas at larger radii. Our results strongly suggest that there are two warm absorbing regions; one located near or within the Broad Line Region, the other associated with the outer molecular torus, scattering medium or Narrow Line Region.
Hubble Space Telescope images of MCG-6-30-15 show a dust lane crossing the galaxy just below the nucleus. In this paper, we argue that this dust lane is responsible for the observed reddening of the nuclear emission and the Fe I edge hinted at in the Chandra spectrum of MCG-6-30-15. We further suggest that the gas within the dust lane can comprise much of the low ionization component (i.e., the one contributing the O VII edge) of the observed warm absorber. Moreover, placing the warm absorbing material at such distances (hundreds of pc) can account for the small outflow velocities of the low ionization absorption lines as well as the constancy of the O VIII edge. Photoionization models of a dusty interstellar gas cloud (with a column appropriate for the reddening toward MCG-6-30-15) using a toy Seyfert 1 spectral energy distribution show that it is possible to obtain a significant O VII edge (tau~0.2) if the material is ~150 pc from the ionizing source. For MCG-6-30-15, such a distance is consistent with the observed dust lane. The current data on MCG-6-30-15 is unable to constrain the dust composition within the warm absorber. Astronomical silicate is a viable candidate, but there are indications of a very low O abundance in the dust, which is inconsistent with a silicate origin. If true, this may indicate that there were repeated cycles of grain destruction and growth from shocks in the interstellar medium of MCG-6-30-15. Pure iron grains are an unlikely dust constituent due to the limit on their abundance in the Galaxy, yet they cannot be ruled out. The high column densities inferred from the highly ionized zone of the warm absorber implies that this gas is dust-free.
Competing models for broad spectral features in the soft X-ray spectrum of the Seyfert I galaxy Mrk766 are tested against data from a 130 ks XMM-Newton observation. A model including relativistically broadened Ly-alpha emission lines of OVIII, NVII a nd CVI is a better fit to 0.3-2 keV XMM RGS data than a dusty warm absorber. Moreover, the measured depth of neutral iron absorption lines in the spectrum is inconsistent with the magnitude of the iron edge required to produce the continuum break at 17-18Angstroms in the dusty warm absorber model. The relativistic emission line model can reproduce the broad-band (0.1-12 keV) XMM-EPIC data with the addition of a fourth line to represent emission from ionized iron at 6.7 keV and an excess due to reflection at energies above the iron line. The profile of the 6.7 keV iron line is consistent with that measured for the low energy lines. There is evidence in the RGS data at the 3sigma level for spectral features that vary with source flux. The covering fraction of warm absorber gas is estimated to be ~12%. Iron in the warm absorber is found to be overabundant with respect to CNO compared to solar values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا