ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft X-ray emission lines from a relativistic accretion disk in MCG -6-30-15 and Mrk 766

63   0   0.0 ( 0 )
 نشر من قبل Graziella Branduardi-Raymont
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the Narrow Line Seyfert 1 galaxies MCG -6-30-15 and Mrk 766 are physically and spectroscopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter. We propose that the remarkably similar features detected in both objects in the 5 - 35 A band are H-like oxygen, nitrogen, and carbon emission lines, gravitationally redshifted and broadened by relativistic effects in the vicinity of a Kerr black hole. We discuss the implications of our interpretation, and demonstrate that the derived parameters can be physically self-consistent.



قيم البحث

اقرأ أيضاً

124 - M. Sako 2001
XMM-Newton RGS spectra of MCG-6-30-15 and Mrk 766 exhibit complex discrete structure, which was interpreted in a paper by Branduardi-Raymont et al. (2001) as evidence for the existence of relativistically broadened Lyman alpha emission from carbon, n itrogen, and oxygen, produced in the inner-most regions of an accretion disk around a Kerr black hole. This suggestion was subsequently criticized in a paper by Lee et al. (2001), who argued that for MCG-6-30-15, the Chandra HETG spectrum, which is partially overlapping the RGS in spectral coverage, is adequately fit by a dusty warm absorber model, with no relativistic line emission. We present a reanalysis of the original RGS data sets in terms of the Lee et al. (2001) model, and demonstrate that spectral models consisting of a smooth continuum with ionized and dust absorption alone cannot reproduce the RGS spectra of both objects. The original relativistic line model with warm absorption proposed by Branduardi-Raymont et al. (2001) provides a superior fit to the RGS data, both in the overall shape of the spectrum and in the discrete absorption lines. Limits on the amount of X-ray absorption by dust particles are discussed. We also discuss a possible theoretical interpretation for the putative relativistic Lyman alpha line emission in terms of the photoionized surface layers of the inner regions of an accretion disk.
We used a ~300 ks long XMM-Newton observation of the Seyfert 1 galaxy MCG-6-30-15 to study the correlation between the 0.2-10 keV X-ray and the 3000-4000 A bands. We found a significant correlation peak at a time lag of 160 ks where the UV flux varia tions preceded the variations in the X-ray band. We interpret this result as evidence in favour of Comptonisation models where the observed X-rays are produced through Compton up-scattering of thermal UV seed photons from an accretion disc, as this process naturally predicts the UV variations to precede similar flux variations in the X-rays. The length of the time lag favours models where the observed UV and the seed-photon-emitting regions are connected by perturbations of the accretion flow traveling inwards through the disc, affecting first the main U-band-emitting radii and then the innermost region where the bulk of the seed photons is expected to be produced. Finally, the absence of significant features in the correlation function with X-ray flux variations preceding those in the UV indicates that the observed U-band photons are not mainly produced through reprocessing of hard X-rays in this source.
134 - M.Guainazzi 1998
We report the first simultaneous measure of the X-ray broadband (0.1--200 keV) continuum and of the iron K-alpha fluorescent line profile in the Seyfert 1 galaxy MCG-6-30-15. Our data confirms the ASCA detection of a skewed and redshifted line profil e (Tanaka et al. 1995). The most straightforward explanation is that the line photons are emitted in the innermost regions of a X-ray illuminated relativistic disk. The line Equivalent Width (~200 eV) is perfectly consistent with the expected value for solar abundances, given the observed amount of Compton reflection. We report also the discovery of a cut-off in the nuclear primary emission at the energy of ~160 keV.
The flux-flux plot (FFP) method can provide model-independent clues regarding the X-ray variability of active galactic nuclei. To use it properly, the bin size of the light curves should be as short as possible, provided the average counts in the lig ht curve bins are larger than $sim 200$. We apply the FFP method to the 2013, simultaneous XMM-Newton and NuSTAR observations of the Seyfert galaxy MCG$-$6-30-15, in the 0.3-40 keV range. The FFPs above $sim 1.6$ keV are well-described by a straight line. This result rules out spectral slope variations and the hypothesis of absorption driven variability. Our results are fully consistent with a power-law component varying in normalization only, with a spectral slope of $sim 2$, plus a variable, relativistic reflection arising from the inner accretion disc around a rotating black hole. We also detect spectral components which remain constant over $sim 4.5$ days (at least). At energies above $sim 1.5$ keV, the stable component is consistent with reflection from distant, neutral material. The constant component at low energies is consistent with a blackbody spectrum of $kT_{rm BB} sim 100$ eV. The fluxes of these components are $sim 10-20%$ of the average continuum flux (in the respective bands). They should always be included in the models that are used to fit the spectrum of the source. The FFPs below 1.6 keV are non-linear, which could be due to the variable warm absorber in this source.
440 - K.Iwasawa 1996
We report on the variability of the iron K emission line in the Seyfert 1 galaxy MCG--6-30-15 during a four-day ASCA observation. The line consists of a narrow core at an energy of about 6.4 keV, and a broad red wing extending to below 5 keV, which a re interpreted as line emission arising from the inner parts of an accretion disk. The narrow core correlates well with the continuum flux whereas the broad wing weakly anti-correlates. When the source is brightest, the line is dominated by the narrow core, whilst during a deep minimum, the narrow core is very weak and a huge red tail appears. However, at other times when the continuum shows rather rapid changes, the broad wing is more variable than the narrow core, and shows evidence for correlated changes contrary to its long time scale behaviour. The peculiar line profile during the deep minimum spectrum suggests that the line emitting region is very close to a central spinning (Kerr) black hole where enormous gravitational effects operate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا