ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange Processes in a Multi-Phase ISM

93   0   0.0 ( 0 )
 نشر من قبل Stefan Harfst
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new particle based code with a multi-phase description of the ISM implemented in order to follow the chemo-dynamical evolution of galaxies. The multi-phase ISM consists of clouds (sticky particles) and diffuse gas (SPH): Exchange of matter, energy and momentum is achieved by drag (due to ram pressure) and condensation or evaporation. Based on time scales we show that in Milky-Way-like galaxies the drag force is for molecular clouds only important, if their relative velocities exceed 100 km/s. For the mass exchange we find that clouds evaporate only if the temperature of the ambient gas is higher than one million Kelvin. At lower temperatures condensation takes place at time scales of the order of 1-10 Gyr.

قيم البحث

اقرأ أيضاً

We present a 3d code for the dynamical evolution of a multi-phase interstellar medium (ISM) coupled to stars via star formation (SF) and feedback processes. The multi-phase ISM consists of clouds (sticky particles) and diffuse gas (SPH): exchange of matter, energy and momentum is achieved by drag (due to ram pressure) and condensation or evaporation processes. The cycle of matter is completed by SF and feedback by SNe and PNe. A SF scheme based on a variable SF efficiency as proposed by Elmegreen & Efremov (1997) is presented. For a Milky Way type galaxy we get a SF rate of ~1 M_sun/yr with an average SF efficiency of ~5%.
92 - S. Harfst , C. Theis , G. Hensler 2004
We present a modified TREESPH code to model galaxies in 3d. The model includes a multi-phase description of the interstellar medium which combines two numerical techniques. A diffuse warm/hot gas phase is modelled by SPH while a sticky particle schem e is used to represent a cloudy medium. Interaction processes, such as star formation and feedback, cooling and mixing by condensation and evaporation, are taken into account. Here we apply our model to the evolution of a Milky Way type galaxy. After an initial stage, a quasi-equilibrium state is reached. It is characterised by a star formation rate of ~1 M_sun/year. Condensation and evaporation rates are in balance at 0.1-1 M_sun/year.
We present a new particle code for modelling the evolution of galaxies. The code is based on a multi-phase description for the interstellar medium (ISM). We included star formation (SF), stellar feedback by massive stars and planetary nebulae, phase transitions and interactions between gas clouds and ambient diffuse gas, namely condensation, evaporation, drag and energy dissipation. The latter is realised by radiative cooling and inelastic cloud-cloud collisions. We present new schemes for SF and stellar feedback. They include a consistent calculation of the star formation efficiency (SFE) based on ISM properties as well as a detailed redistribution of the feedback energy into the different ISM phases. As a first test example we show a model of the evolution of a present day Milky-Way-type galaxy. Though the model exhibits a quasi-stationary behaviour in global properties like mass fractions or surface densities, the evolution of the ISM is locally strongly variable depending on the local SF and stellar feedback. We start only with two distinct phases, but a three-phase ISM is formed soon consisting of cold molecular clouds, a warm gas disk and a hot gaseous halo. Hot gas is also found in bubbles in the disk accompanied by type II supernovae explosions. The star formation rate (SFR) is ~1.6 M_sun/year on average decreasing slowly with time due to gas consumption. In order to maintain a constant SFR gas replenishment, e.g. by infall, of the order 1 M_sun/year is required. Our model is in fair agreement with Kennicutts (1998) SF law including the cut-off at ~10 M_sun/pc^2. Models with a constant SFE, i.e. no feedback on the SF, fail to reproduce Kennicutts law.
We present a multi-wavelength study of the gaseous medium surrounding the nearby active galactic nucleus (AGN) Fornax A. Using MeerKAT, ALMA and MUSE observations we reveal a complex distribution of the atomic (HI), molecular (CO), and ionised gas in its centre and along the radio jets. By studying the multi-scale kinematics of the multi-phase gas, we reveal the presence of concurrent AGN feeding and feedback phenomena. Several clouds and an extended 3 kpc filament -- perpendicular to the radio jets and the inner disk ($rlesssim 4.5$ kpc) -- show highly-turbulent kinematics, which likely induces nonlinear condensation and subsequent Chaotic Cold Accretion (CCA) onto the AGN. In the wake of the radio jets and in an external ($rgtrsim 4.5$ kpc) ring, we identify an entrained massive ($sim$ $10^7$ M$_odot$) multi-phase outflow ($v_{rm OUT}sim 2000$ km s$^{-1}$). The rapid flickering of the nuclear activity of Fornax A ($sim$ 3 Myr) and the gas experiencing turbulent condensation raining onto the AGN provide quantitative evidence that a recurrent, tight feeding and feedback cycle may be self-regulating the activity of Fornax A, in agreement with CCA simulations. To date, this is one of the most in-depth probes of such a mechanism, paving the way to apply these precise diagnostics to a larger sample of nearby AGN hosts and their multi-phase ISM.
We study the multi-phase feedback processes in the central ~3 kpc of the barred Sy 2 galaxy NGC 5643. We use observations of the cold molecular gas (ALMA CO(2-1)) and ionized gas (MUSE IFU). We study different regions along the outflow zone which ext ends out to ~2.3 kpc in the same direction (east-west) as the radio jet, as well as nuclear/circumnuclear regions in the host galaxy disk. The deprojected outflowing velocities of the cold molecular gas (median Vcentral~189 km s^-1) are generally lower than those of the outflowing ionized gas, which reach deprojected velocities of up to 750 km s^-1 close to the AGN, and their spatial profiles follow those of the ionized phase. This suggests that the outflowing molecular gas in the galaxy disk is being entrained by the AGN wind. We derive molecular and ionized outflow masses of ~5.2x10^7 Msun and 8.5x10^4 Msun and molecular and ionized outflow mass rates of ~51 Msun yr^-1 and 0.14 Msun yr^-1. Therefore, the molecular phase dominates the outflow mass and outflow mass rate, while the outflow kinetic power and momentum are similar in both phases. However, the wind momentum load for the molecular and ionized outflow phases are ~27-5 and <1, which suggests that the molecular phase is not momentum conserving while the ionized one most certainly is. The molecular gas content (~1.5x10^7 Msun) of the eastern spiral arm is approximately 50-70% of the content of the western one. We interpret this as destruction/clearing of the molecular gas produced by the AGN wind impacting in the host galaxy. The increase of the molecular phase momentum implies that part of the kinetic energy from the AGN wind is transmitted to the molecular outflow. This suggest that in Sy-like AGN such as NGC 5643, the radiative/quasar and the kinetic/radio AGN feedback modes coexist and may shape the host galaxies even at kpc-scales via both positive and (mild) negative feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا