ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-phase feedback processes in the Sy2 galaxy NGC 5643

81   0   0.0 ( 0 )
 نشر من قبل Ismael Garcia-Bernete Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Garcia-Bernete




اسأل ChatGPT حول البحث

We study the multi-phase feedback processes in the central ~3 kpc of the barred Sy 2 galaxy NGC 5643. We use observations of the cold molecular gas (ALMA CO(2-1)) and ionized gas (MUSE IFU). We study different regions along the outflow zone which extends out to ~2.3 kpc in the same direction (east-west) as the radio jet, as well as nuclear/circumnuclear regions in the host galaxy disk. The deprojected outflowing velocities of the cold molecular gas (median Vcentral~189 km s^-1) are generally lower than those of the outflowing ionized gas, which reach deprojected velocities of up to 750 km s^-1 close to the AGN, and their spatial profiles follow those of the ionized phase. This suggests that the outflowing molecular gas in the galaxy disk is being entrained by the AGN wind. We derive molecular and ionized outflow masses of ~5.2x10^7 Msun and 8.5x10^4 Msun and molecular and ionized outflow mass rates of ~51 Msun yr^-1 and 0.14 Msun yr^-1. Therefore, the molecular phase dominates the outflow mass and outflow mass rate, while the outflow kinetic power and momentum are similar in both phases. However, the wind momentum load for the molecular and ionized outflow phases are ~27-5 and <1, which suggests that the molecular phase is not momentum conserving while the ionized one most certainly is. The molecular gas content (~1.5x10^7 Msun) of the eastern spiral arm is approximately 50-70% of the content of the western one. We interpret this as destruction/clearing of the molecular gas produced by the AGN wind impacting in the host galaxy. The increase of the molecular phase momentum implies that part of the kinetic energy from the AGN wind is transmitted to the molecular outflow. This suggest that in Sy-like AGN such as NGC 5643, the radiative/quasar and the kinetic/radio AGN feedback modes coexist and may shape the host galaxies even at kpc-scales via both positive and (mild) negative feedback.

قيم البحث

اقرأ أيضاً

We study the ionization and kinematics of the ionized gas in the nuclear region of the barred Seyfert 2 galaxy NGC~5643 using MUSE integral field observations in the framework of the MAGNUM (Measuring Active Galactic Nuclei Under MUSE Microscope) sur vey. The data were used to identify regions with different ionization conditions and to map the gas density and the dust extinction. We find evidence for a double sided ionization cone, possibly collimated by a dusty structure surrounding the nucleus. At the center of the ionization cone, outflowing ionized gas is revealed as a blueshifted, asymmetric wing of the [OIII] emission line, up to projected velocity v(10)~-450 km/s. The outflow is also seen as a diffuse, low luminosity radio and X-ray jet, with similar extension. The outflowing material points in the direction of two clumps characterized by prominent line emission with spectra typical of HII regions, located at the edge of the dust lane of the bar. We propose that the star formation in the clumps is due to `positive feedback induced by gas compression by the nuclear outflow, providing the first candidate for outflow induced star formation in a Seyfert-like radio quiet AGN. This suggests that positive feedback may be a relevant mechanism in shaping the black hole-host galaxy coevolution.
We present high-resolution (synthesised beam size 0.088x0.083 or 25x23 pc$^2$) Atacama Large Millimetre/submillimetre Array (ALMA) $^{12}$CO(2-1) line and 236 GHz continuum observations, as well as 5 GHz enhanced Multi-Element Radio Linked Interferom eter Network (e-MERLIN) continuum observations, of NGC 0708; the brightest galaxy in the low-mass galaxy cluster Abell 262. The line observations reveal a turbulent, rotating disc of molecular gas in the core of the galaxy, and a high-velocity, blue-shifted feature ~0.4 (~113 pc) from its centre. The sub-millimetre continuum emission peaks at the nucleus, but extends towards this anomalous CO emission feature. No corresponding elongation is found on the same spatial scales at 5 GHz with e-MERLIN. We discuss potential causes for the anomalous blue-shifted emission detected in this source, and conclude that it is most likely to be a low-mass in-falling filament of material condensing from the hot intra-cluster medium via chaotic cold accretion, but it is also possible that it is a jet-driven molecular outflow. We estimate the physical properties this structure has in these two scenarios, and show that either explanation is viable. We suggest future observations with integral field spectrographs will be able to determine the true cause of this anomalous emission, and provide further evidence for interaction between quenched cooling flows and mechanical feedback on both small and large scales in this source.
We present here the results of our analysis of X-ray properties of Seyfert 2 galaxy NGC 3281, based on the observational data obtained by XMM-Newton and INTEGRAL within the energy ranges 0.2-12 keV and 20-150 keV, respectively. The XMM-Newton spectru m of this object is presented for the first time. We show that fitting the X-ray spectrum of this galaxy with models based on the reflection from the disc with infinite column density yields non-physical results. More appropriate fit takes into account both transmitted and reflected emission, passed through a gas-dusty torus-like structure. Keeping this in mind, to model the inhomogeneous clumpy torus, we used the MYTorus model. Hence, we propose that the torus of NGC 3281 is not continuous structure, but it consists of separate clouds, which is in a good agreement with the results of near-IR observations. Using this assumption, we found that the torus inclination angle and the hydrogen column density are 66.98^{+2.63}_{-1.34} degrees and 2.08^{+0.35}_{-0.18}x10^{24} cm^{-2}, respectively. Also, the emission of the hot diffuse gas with temperature ~590 eV and warm absorption were detected.
We present photometric and spectroscopic observations of SN 2013aa and SN 2017cbv, two nearly identical type Ia supernovae (SNe Ia) in the host galaxy NGC 5643. The optical photometry has been obtained using the same telescope and instruments used by the Carnegie Supernova Project. This eliminates most instrumental systematics and provides light curves in a stable and well-understood photometric system. Having the same host galaxy also eliminates systematics due to distance and peculiar velocity, providing an opportunity to directly test the relative precision of SNe Ia as standard candles. The two SNe have nearly identical decline rates, negligible reddening, and remarkably similar spectra and, at a distance of $sim 20$ Mpc, are ideal as potential calibrators for the absolute distance using primary indicators such as Cepheid variables. We discuss to what extent these two SNe can be considered twins and compare them with other supernova siblings in the literature and their likely progenitor scenarios. Using 12 galaxies that hosted 2 or more SNe~Ia, we find that when using SNe~Ia, and after accounting for all sources of observational error, one gets consistency in distance to 3 percent.
The primary goal of the Carnegie Chicago Hubble Program (CCHP) is to calibrate the zero-point of the Type Ia supernova (SN Ia) Hubble Diagram through the use of Population II standard candles. So far, the CCHP has measured direct distances to 11 SNe Ia, and here we increase that number to 15 with two new TRGB distances measured to NGC 5643 and NGC 1404, for a total of 20 SN Ia calibrators. We present resolved, point-source photometry from new Hubble Space Telescope (HST) imaging of these two galaxies in the F814W and F606W bandpasses. From each galaxys stellar halo, we construct an F814W-band luminosity function in which we detect an unambiguous edge feature identified as the Tip of the Red Giant Branch (TRGB). For NGC 5643, we find $mu_0 = 30.48pm0.03(stat)pm0.07(sys) $ mag, and for NGC 1404 we find $ mu_0=31.36pm 0.04(stat)pm 0.05(sys)$ mag. From a preliminary consideration of the SNe Ia in these galaxies, we find increased confidence in the results presented in Paper VIII (Freedman et al. 2019). The high precision of our TRGB distances enables a significant measurement of the 3D displacement between the Fornax Cluster galaxies NGC 1404 and NGC 1316 (Fornax A) equal to $1.50^{+0.25}_{-0.39}$ Mpc, which we show is in agreement with independent literature constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا